Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536752
Title Modelling the selective removal of sodium ions from greenhouse irrigation water using membrane technology
Author(s) Qian, Z.; Miedema, H.; Smet, L.C.P.M. de; Sudhȍlter, E.J.R.
Source Chemical Engineering Research & Design 134 (2018). - ISSN 0263-8762 - p. 154 - 161.
DOI https://doi.org/10.1016/j.cherd.2018.03.040
Department(s) Laboratory for Organic Chemistry
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Greenhouse - Irrigation water - Mass balance - Modelling - Na over K membrane selectivity - Sodium removal
Abstract A model is presented for the Na+ and K+ levels in the irrigation water of greenhouses, specifically those for the cultivation of tomato. The model, essentially based on mass balances, not only describes the accumulation of Na+ but includes a membrane unit for the selective removal of Na+ as well. As determined by the membrane properties, some of the K+ is removed as well. Based on real-life process parameters, the model calculates the Na+ and K+ concentration at three reference points. These process parameters include the evapotranspiration rate, the K+ uptake by the plants, the Na+ and K+ content of the fertilizer, the Na+ leaching out from the hydroponic substrate material, and the Na+ and K+ removal efficiency of the membrane unit. Using these parameters and given a constant K+ concentration of the irrigation water entering the greenhouse of 6.6 mM (resulting in the optimal K+ concentration for tomato cultivation), the composition of the solution is completely defined at all three reference points per irrigation cycle. Prime aim of this investigation is to explore the requirements for the selective membrane that currently is developed in our lab. It is found that even for a limited Na+ over K+ selectivity of 6, after a number of cycles the Na+ level reaches steady state at a level below the upper (toxic) threshold for tomato cultivation (20 mM). Economic aspects and ways of implementation of such a system are briefly discussed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.