Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536915
Title Geographically weighted area-to-point regression kriging for spatial downscaling in remote sensing
Author(s) Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B.M.; Wang, Le
Source Remote Sensing 10 (2018)4. - ISSN 2072-4292
DOI https://doi.org/10.3390/rs10040579
Department(s) Agricultural Economics and Rural Policy Group
ISRIC - World Soil Information
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) High-resolution imaging - Soil moisture - Spatial downscaling
Abstract Spatial downscaling of remotely sensed products is one of the main ways to obtain earth observations at fine resolution. Area-to-point (ATP) geostatistical techniques, in which regular fine grids of remote sensing products are regarded as points, have been applied widely for spatial downscaling. In spatial downscaling, it is common to use auxiliary information to explain some of the unknown spatial variation of the target geographic variable. Because of the ubiquitously spatial heterogeneities, the observed variables always exhibit uncontrolled variance. To overcome problems caused by local heterogeneity that cannot meet the stationarity requirement in ATP regression kriging, this paper proposes a hybrid spatial statistical method which incorporates geographically weighted regression and ATP kriging for spatial downscaling. The proposed geographically weighted ATP regression kriging (GWATPRK) combines fine spatial resolution auxiliary information and allows for non-stationarity in a downscaling model. The approach was verified using eight groups of four different 25 km-resolution surface soil moisture (SSM) remote sensing products to obtain 1 km SSM predictions in two experimental regions, in conjunction with the implementation of three benchmark methods. Analyses and comparisons of the different downscaled results showed GWATPRK obtained downscaled fine spatial resolution images with greater quality and an average loss with a root mean square error value of 17.5%. The analysis indicated the proposed method has high potential for spatial downscaling in remote sensing applications.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.