Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536926
Title The preferential retention of VIZn over IVZn on birnessite during dissolution/desorption
Author(s) Qin, Zhangjie; Yin, Hui; Wang, Xiaoming; Zhang, Qin; Lan, Shuai; Koopal, Luuk K.; Zheng, Lirong; Feng, Xionghan; Liu, Fan
Source Applied Clay Science 161 (2018). - ISSN 0169-1317 - p. 169 - 175.
Department(s) Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Birnessite - Desorption - Dissolution - Extended X-ray absorption fine structure spectroscopy - Zinc coordination
Abstract Zn is a common heavy metal in soils and sediments. In this study, the release behaviors of octahedral (VIZn) and tetrahedral (IVZn) Zn complexes on synthesized hexagonal birnessite were explored by solution chemistry method in combination with spectroscopic analysis. In acidic dissolution processes, the release of adsorbed Zn2+ from birnessite occurred into two stages: in the first stage, ~60% of Zn2+ was desorbed rapidly, with only 8% of Mn being released, and the ratio of VIZn/IVZn increased with time; in the second stage, the residual Zn2+ was mostly VIZn and released slowly at a nearly constant rate until complete dissolution of the matrix mineral was observed. During desorption of Zn2+ by Pb2+, the ratio of VIZn/IVZn on birnessite also increased, while the residual percentage of VIZn remained nearly constant. However, it is known that IVZn-triple corner-sharing (TCS) is more stable than VIZn-TCS, suggesting that part of the remaining IVZn-TCS on birnessite might transform to VIZn-TCS immediately when VIZn-TCS is replaced by H+ or Pb2+. Additionally, the possible distribution of Mn3+ and IVZn or the partial charge compensation by protons can lead to the preferential retention of VIZn on birnessite or the preferential re-adsorption of VIZn at the new edge sites. These results can provide new insights into the geochemical behavior of Zn2+ contaminant in soil and aquatic environments.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.