Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 536959
Title Modelling mobile agent-based ecosystem services using kernel weighted predictors
Author(s) Goedhart, Paul W.; Lof, Marjolein E.; Bianchi, Felix J.J.A.; Baveco, Hans J.M.; Werf, Wopke van der
Source Methods in Ecology and Evolution 9 (2018)5. - ISSN 2041-210X - p. 1241 - 1249.
DOI http://dx.doi.org/10.1111/2041-210X.12972
Department(s) Biometris (PPO/PRI)
Environmental Systems Analysis Group
WIMEK
Farming Systems Ecology
Alterra - Environmental risk assessment
Crop and Weed Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract 1. Agriculture benefits from ecosystem services provided by mobile agents, such as biological pest control by natural enemies and pollination by bees. However, methods that can generate spatially explicit predictions and maps of these ecosystem services based on empirical data are still scarce. 2. Here we propose a generic statistical model to derive kernel functions to characterize the spatial distribution of ecosystem services provided by mobile agents. The model is similar in spirit to a generalized linear model, and uses data of landscape composition and ecosystem services assessed at target sites to estimate parameters of the kernel. The approach is tested in a simulation study and illustrated by an empirical case study on parasitism rates of the diamondback moth Plutella xylostella. 3. The simulation study shows that the scale parameter of the exponential power kernel can be estimated with limited bias, whereas estimation of the shape parameter is difficult. For the case study the model provides biologically relevant estimates for the kernel associated with parasitism of Plutella xylostella. These estimates can be used to generate ecosystem service maps for existing or planned landscapes. The case study reveals that predictions can be sensitive to the parameter values for the width and shape of the kernel, and to the link function used in the statistical model. 4. In the last two decades numerous empirical studies assessed ecosystem services at target sites and related these to the surrounding landscape. Our method can take advantage of these data by estimating underlying kernels that can be used to map the spatial distribution of ecosystem services. However, empirical data that can discriminate between alternative kernel shapes remain critical.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.