Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 537720
Title Centennial- to millennial-scale hard rock erosion rates deduced from luminescence-depth profiles
Author(s) Sohbati, Reza; Liu, Jinfeng; Jain, Mayank; Murray, Andrew; Egholm, David; Paris, Richard; Guralnik, Benny
Source Earth and Planetary Science Letters 493 (2018). - ISSN 0012-821X - p. 218 - 230.
DOI https://doi.org/10.1016/j.epsl.2018.04.017
Department(s) PE&RC
Soil Geography and Landscape
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) erosion rate - exposure dating - luminescence - OSL - rock surface - weathering rate
Abstract The measurement of erosion and weathering rates in different geomorphic settings and over diverse temporal and spatial scales is fundamental to the quantification of rates and patterns of earth surface processes. A knowledge of the rates of these surface processes helps one to decipher their relative contribution to landscape evolution – information that is crucial to understanding the interaction between climate, tectonics and landscape. Consequently, a wide range of techniques has been developed to determine short- (<102 a) and long-term (>104 a) erosion rates. However, no method is available to quantify hard rock erosion rates at centennial to millennial timescales. Here we propose a novel technique, based on the solar bleaching of luminescence signals with depth into rock surfaces, to bridge this analytical gap. We apply our technique to glacial and landslide boulders in the Eastern Pamirs, China. The calculated erosion rates from the smooth varnished surfaces of 7 out of the 8 boulders sampled in this study vary between <0.038±0.002 and 1.72±0.04 mmka−1 (the eighth boulder gave an anomalously high erosion rate, possibly due to a recent chipping/cracking loss of surface). Given this preferential sampling of smooth surfaces, assumed to arise from grain-by-grain surface loss, we consider these rates as minimum estimates of rock surface denudation rates in the Eastern Pamirs, China.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.