Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538070
Title Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration
Author(s) Prima, S. Di; Concialdi, P.; Lassabatere, L.; Angulo-Jaramillo, R.; Pirastru, M.; Cerdà, A.; Keesstra, S.
Source Catena 167 (2018). - ISSN 0341-8162 - p. 373 - 384.
Department(s) PE&RC
Alterra - Soil, water and land use
Soil Physics and Land Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Beerkan infiltration experiment - BEST algorithms - Rainfall simulation - Saturated soil hydraulic conductivity - Soil sealing

Soil surface sealing is a major cause of decreased infiltration rates and increased surface runoff and erosion during a rainstorm. The objective of this paper is to quantify the effect of surface sealing on infiltration for 3 layered soils with different textures for the upper layer and investigate the capability of BEST procedure to catch the formation of the seal and related consequences on water infiltration. Rainfall experiments were carried out to induce the formation of the seal. Meanwhile, Beerkan infiltration runs were carried out pouring water at different distances from the soil surface (BEST-H versus BEST-L runs, with a High and Low water pouring heights, respectively) for the same type of layered soils. Then, we determined saturated soil hydraulic conductivity, Ks, values from rainfall simulation and Beerkan infiltration experiments. Rainfall simulations carried out on soil layers having different depths allowed to demonstrate that infiltration processes were mainly driven by the seal and that Ks estimates were representative of the seal. Mean Ks values, estimated for the late-phase, ranged from 13.9 to 26.2 mm h−1. Soil sealing induced an increase in soil bulk density by 38.7 to 42.1%, depending on the type of soil. Rainfall-deduced Ks data were used as target values and compared with those estimated by the Beerkan runs. BEST-H runs proved more appropriate than BEST-L runs, those last triggering no seal formation. The predictive potential of the three BEST algorithms (BEST-slope, BEST-intercept and BEST-steady) to yield a proper Ks estimate for the seal was also investigated. BEST-slope yielded negative Ks values in 87% of the cases for BEST-H runs. Positive values were obtained in 100% of the cases with BEST-steady and BEST-intercept. However, poorer fits were obtained with the latter algorithm. The comparison of Ks estimates with rainfall-deduced estimates allowed to identify BEST-steady algorithm with BEST-H run as the best combination. The method proposed in this study could be used to easily measure the seal's saturated hydraulic conductivity of an initially undisturbed bare soil directly impacted by water with minimal experimental efforts, using small volumes of water and easily transportable equipment.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.