Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538072
Title In-situ Single Mode Dielectric Measurements of microwaveable snack pellets
Author(s) Esveld, Erik; Bows, John; Vollebregt, Martijntje; Sman, Ruud van der
Source Journal of Food Engineering 231 (2018). - ISSN 0260-8774 - p. 109 - 122.
DOI https://doi.org/10.1016/j.jfoodeng.2018.03.014
Department(s) FBR Food Technology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Dielectric properties - Expansion - Microwave - Starch
Abstract

The dielectric properties of starch based snack pellets have been measured in situ during microwave heating and expansion. The microwave setup consists of a single mode shorted waveguide, equipped with a six-port impedance analyser which measures the absorbed power and complex reflection coefficient during heating. The pellet is suspended in the electric field maximum, with an optic temperature sensor inserted in the centre. The dielectric properties of the pellet during heating and after expansion are obtained via an inverse mapping of the recorded reflection coefficient to dielectric properties, which are pre-computed via finite elements simulations. Experiments show that the dielectric properties of the starch pellets change significantly during heating, expansion and subsequent drying. The dielectric properties increase with increasing temperature up to the moment that the pellet starts expanding. Subsequently, the power absorption shows a sudden decline, which is mainly due to the sudden change in porosity. Addition of salt (2.5%) to the starch pellet composition results in a slight decrease of the dielectric constant and loss factor, as it apparently lowers the effective mobility of the dipoles. The dielectric properties as function of temperature and moisture content were fitted with a polynomial model. The strong effect of porosity for the dielectric properties of the expanded snack is well predicted with the effective medium mixing rule.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.