Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538107
Title Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production
Author(s) Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; Goede, Eefje De; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.
Source Scientific Reports 8 (2018)1. - ISSN 2045-2322
Department(s) Nature Conservation and Plant Ecology
Publication type Refereed Article in a scientific journal
Publication year 2018

Gross primary production (GPP) is a key driver of the peatland carbon cycle. Although many studies have explored the apparent GPP under natural light conditions, knowledge of the maximum GPP at light-saturation (GPPmax) and its spatio-temporal variation is limited. This information, however, is crucial since GPPmax essentially constrains the upper boundary for apparent GPP. Using chamber measurements combined with an external light source across experimental plots where vegetation composition was altered through long-term (20-year) nitrogen addition and artificial warming, we could quantify GPPmax in-situ and disentangle its biotic and abiotic controls in a boreal peatland. We found large spatial and temporal variations in the magnitudes of GPPmax which were related to vegetation species composition and phenology rather than abiotic factors. Specifically, we identified vegetation phenology as the main driver of the seasonal GPPmax trajectory. Abiotic anomalies (i.e. in air temperature and water table level), however, caused species-specific divergence between the trajectories of GPPmax and plant development. Our study demonstrates that photosynthetically active biomass constrains the potential peatland photosynthesis while abiotic factors act as secondary modifiers. This further calls for a better representation of species-specific vegetation phenology in process-based peatland models to improve predictions of global change impacts on the peatland carbon cycle.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.