Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538170
Title The functional oligomeric state of tegument protein GP41 is essential for baculovirus budded virion and occlusion-derived virion assembly
Author(s) Li, Yimeng; Shen, Shu; Hu, Liangbo; Deng, Fei; Vlak, Just M.; Hu, Zhihong; Wang, Hualin; Wang, Manli
Source Journal of Virology 92 (2018)12. - ISSN 0022-538X
DOI https://doi.org/10.1128/JVI.02083-17
Department(s) Laboratory of Virology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Baculovirus - Function - GP41 - Leucine zipper - Oligomerization - Tegument protein - Virion assembly
Abstract gp41, one of the baculovirus core genes, encodes the only recognized tegument (O-glycosylated) protein of the occlusion-derived virion (ODV) phenotype so far. A previous study using a temperature-sensitive Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) mutant showed that GP41 plays a crucial role in budded virion (BV) formation. However, the precise function of GP41 in the baculovirus replication cycle remains unclear. In this study, AcMNPV GP41 was found to accumulate around the ring zone (RZ) region within the infected nucleus and finally assembled into both BVs and ODVs. Deletion of gp41 from the AcMNPV genome showed that BVs were no longer formed and ODVs were no longer assembled, suggesting the essential role of this gene in baculovirus virion morphogenesis. In infected cells, besides the 42-kDa monomers, dimers and trimers were detected under nonreducing conditions, whereas only trimeric GP41 forms were selectively incorporated into BVs or ODVs. Mutations of all five cysteines in GP41 individually had minor effects on GP41 oligomer formation, albeit certain mutations impaired infectious BV production, suggesting flexibility in the intermolecular disulfide bonding. Single mutations of key leucines within two predicted leucine zipper-like motifs did not interfere with GP41 oligomerization or BV and ODV formation, but double leucine mutations completely blocked oligomerization of GP41 and progeny BV production. In the latter case, the usual subcellular localization, especially RZ accumulation, of GP41 was abolished. The above findings clearly point out a close correlation between GP41 oligomerization and function and therefore highlight the oligomeric state as the functional form of GP41 in the baculovirus replication cycle.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.