Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538196
Title The influence of aggregate size fraction and horizon position on microbial community composition
Author(s) Fox, Aaron; Ikoyi, Israel; Torres-Sallan, Gemma; Lanigan, Gary; Schmalenberger, Achim; Wakelin, Steve; Creamer, Rachel
Source Applied Soil Ecology 127 (2018). - ISSN 0929-1393 - p. 19 - 29.
DOI https://doi.org/10.1016/j.apsoil.2018.02.023
Department(s) Chair Soil Biology and Biological Soil Quality
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Aggregate sized fraction - Bacteria - Community profiling - Fungi - Horizon position - Next generation sequencing
Abstract The influence of horizon position and aggregate size on bacterial and fungal community composition was determined. From nine sites, soils were collected from the top three horizon positions (H1, H2 and H3). Physical fractionation separated samples into large macroaggregate (LM, >2000 μm), macroaggregate (MAC, >250 μm), microaggregate (MIC, <250 μm), and silt and clay (SC, 53 μm) fractions. In all samples, the structure of the bacterial and fungal community composition was assessed via restriction fragment length polymorphism (T-RFLP), and for the four aggregate sizes from the top two horizons positions an in-depth analysis of the bacterial community was conducted using next generation sequencing (NGS). Bacterial and fungal communities both differed between aggregate-sizes. Changes in the composition of the bacterial and fungal communities also occurred among horizon positions, with a significant interaction between aggregate size and horizon position evident for the bacterial community. Using NGS, it was shown that aggregate-size had a significant effect on the bacterial community in both horizon positions at both the phyla and family taxonomic levels. MAC and MIC significantly differed in the % relative abundance of bacterial groups, potentially indicating differing predation pressures. These results indicate that both horizon position and aggregate size support distinct microbial communities. Understanding these parameters is critical in our comprehension of the patterns of microbial diversity in soil.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.