Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538528
Title Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone
Author(s) Todea, Anamaria; Aparaschivei, Diana; Badea, Valentin; Boeriu, Carmen G.; Peter, Francisc
Source Biotechnology Journal 13 (2018)6. - ISSN 1860-6768
DOI https://doi.org/10.1002/biot.201700629
Department(s) VLAG
FBR Sustainable Chemistry & Technology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) biocatalysis - biopolymers - hydroxy-fatty acids - lipase - ϵ-caprolactone
Abstract

Developments of past years placed the bio-based polyesters as competitive substitutes for fossil-based polymers. Moreover, enzymatic polymerization using lipase catalysts has become an important green alternative to chemical polymerization for the synthesis of polyesters with biomedical applications, as several drawbacks related to the presence of traces of metal catalysts, toxicity and higher temperatures could be avoided. Copolymerization of ϵ-caprolactone (CL) with four hydroxy-fatty acids (HFA) from renewable sources, 10-hydroxystearic acid, 12-hydroxystearic acid, ricinoleic acid, and 16-hydroxyhexadecanoic acid, was carried out using commercially available immobilized lipases from Candida antarctica B, Thermomyces lanuginosus, and Pseudomonas stutzeri, as well as a native lipase. MALDI-TOF-MS and 2D-NMR analysis confirmed the formation of linear/branched and cyclic oligomers with average molecular weight around 1200 and polymerization degree up to 15. The appropriate selection of the biocatalyst and reaction temperature allowed the tailoring of the non-cyclic/cyclic copolymer ratio and increase of the total copolymer content in the reaction product above 80%. The catalytic efficiency of the best performing biocatalyst (Lipozyme TL) is evaluated during four reaction cycles, showing excellent operational stability. The thermal stability of the reaction products is assessed based on TG and DSC analysis. This new synthetic route for biobased oligomers with novel functionalities and properties could have promising biomedical applications.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.