Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538856
Title Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum
Author(s) Jonge, Ronnie de; Ebert, Malaika K.; Huitt-Roehl, Callie R.; Pal, Paramita; Suttle, Jeffrey C.; Spanner, Rebecca E.; Neubauer, Jonathan D.; Jurick, Wayne M.; Stott, Karina A.; Secor, Gary A.; Thomma, Bart P.H.J.; Peer, Yves Van De; Townsend, Craig A.; Bolton, Melvin D.
Source Proceedings of the National Academy of Sciences of the United States of America 115 (2018)24. - ISSN 0027-8424 - p. E5459 - E5466.
DOI https://doi.org/10.1073/pnas.1712798115
Department(s) Laboratory of Phytopathology
EPS
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Cercospora - Cercosporin - Natural product - Perylenequinone - Secondary metabolism
Abstract

Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis (CTB) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae. Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB clusterharboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae, the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.