Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 538980
Title Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements : an example of As-contaminated mining soils
Author(s) Rajpert, Liwia; Schäffer, Andreas; Lenz, Markus
Source Applied Microbiology and Biotechnology 102 (2018)17. - ISSN 0175-7598 - p. 7635 - 7641.
Department(s) Sub-department of Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Arsenic remediation - Redox-stat bioreactor - Trace element fate

The environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 μg g−1) due to reductive dissolution of Fe (1363 μg g−1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 μg g−1 released vs. 46 μg g−1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.