Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539136
Title Modelling of river faecal indicator bacteria dynamics as a basis for faecal contamination reduction
Author(s) Majedul Islam, M.M.; Sokolova, Ekaterina; Hofstra, Nynke
Source Journal of Hydrology 563 (2018). - ISSN 0022-1694 - p. 1000 - 1008.
DOI https://doi.org/10.1016/j.jhydrol.2018.06.077
Department(s) Environmental Systems Analysis Group
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) E. coli - Enterococci - Faecal contamination - MIKE 21 FM model - Wastewater - Water quality modelling
Abstract

To improve microbial water quality and to prevent waterborne disease outbreaks, knowledge on the fate and transport of contaminants and on the contributions from different faecal sources to the total contamination is essential. The fate and transport of faecal indicators E. coli and enterococci within the Betna River in Bangladesh were simulated using a coupled hydrodynamic and water quality model. The hydrodynamic model for the river was set up, calibrated and validated with water level and discharge in our earlier study. In this study, the hydrodynamic model was further validated using measured water temperature and salinity and coupled with the water quality module. Bacterial load data from various faecal sources were collected and used as input in the water quality model. The model output corresponded very well with the measured E. coli and enterococci concentrations in the river; the Root Mean Square Error and the Nash-Sutcliffe efficiency for Log10-transformed concentrations were found to be 0.23 (Log10 CFU/100 ml) and 0.84 for E. coli, and 0.19 (Log10 CFU/100 ml) and 0.86 for enterococci, respectively. Then, the sensitivity of the model was tested by removing one process or forcing at a time. These simulations revealed that the microbial decay, the upstream concentrations and the discharge of untreated wastewater were the primary factors controlling the concentrations in the river, while wind and the contribution from the diffuse sources (i.e. urban and agricultural runoff) were unlikely to have a major influence. Finally, the model was applied to investigate the influence of wastewater treatment on the bacteria concentrations. This revealed that wastewater treatment would result in a considerable improvement of the microbial water quality of the Betna River. This paper demonstrates the application of a comprehensive state-of-art model in a river in a data-poor tropical area. The model can potentially be applied to other watersheds and can help in formulating solutions to improve the microbial water quality.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.