Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539158
Title Investigating the central metabolism of Clostridium thermosuccinogenes
Author(s) Koendjbiharie, Jeroen Girwar; Wiersma, Kilian; Kranenburg, Richard van
Source Applied and Environmental Microbiology 84 (2018)13. - ISSN 0099-2240
DOI https://doi.org/10.1128/AEM.00363-18
Department(s) Microbiological Laboratory
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Clostridium thermosuccinogenes - Malate dehydrogenase - Succinate - Xylulokinase
Abstract

Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that on xylose did not provide any leads to potential transaldolase genes or alternative pathways connecting the C5 with the C3/C6 metabolism. Enzyme assays showed xylulokinase to prefer GTP over ATP, which could be of importance for engineering xylose utilization in related thermophilic species of industrial relevance. Furthermore, the gene responsible for malate dehydrogenase was identified via heterologous expression in Escherichia coli and subsequent assays with the cell extract, which has proven to be a simple and powerful method for the basal characterization of thermophilic enzymes.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.