Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539300
Title Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics
Author(s) Behr, C.; Sperber, S.; Jiang, X.; Strauss, V.; Kamp, H.; Walk, T.; Herold, M.; Beekmann, K.; Rietjens, I.M.C.M.; Ravenzwaay, B. van
Source Toxicology and Applied Pharmacology 355 (2018). - ISSN 0041-008X - p. 198 - 210.
DOI https://doi.org/10.1016/j.taap.2018.06.028
Department(s) Sub-department of Toxicology
PRI BIOS Plant Development Systems
VLAG
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Antibiotics - Gut content and tissue - Gut microbiome - Metabolite profiling - Metabolomics - Repeated dose oral toxicity study
Abstract

The metabolic functionality of the gut microbiota contributes to the metabolism and well-being of its host, although detailed insight in the microbiota's metabolism is lacking. Omics technologies could facilitate unraveling metabolism by the gut microbiota. In this study, we performed metabolite profiling of different matrices of the gut, after antibiotic treatment of rats in order to evaluate metabolite changes observed at different dose levels and in different sexes, and to identify the best tissue matrix for further investigations regarding an assessment of metabolic effects of new compounds with antibiotic activity. Three different antibiotics (vancomycin, streptomycin and roxithromycin) were administered orally to rats for 28 days according to the OECD 407 guideline with a subsequent metabolic profiling in feces, cecum content and gut tissue (jejunum, ileum, cecum, colon and rectum). The data were analyzed in the MetaMap®Tox database. Treatment-related effects could be observed in the metabolite profile of feces and cecum content, but not of the different gut tissues. The metabolite profile showed compound specific effects on the microbiome. In line with the activity spectra of the antibiotics tested, vancomycin showed the largest effects, followed by roxithromycin and then by streptomycin for which changes were modest. In general, for all antibiotics the largest changes were observed for the classes of lipids (increase up to 94-fold), bile acids (increase up to 33-fold), amino acids (increase up to 200-fold) and amino acid related (increase up to 348-fold). The most relevant changes in metabolite values were similar in feces and cecum content and among sexes. The results of this targeted analysis indicate that the metabolic profiles of male and female animals in the gut microbiome are comparable. Concluding, taking other samples than feces does not add any extra information. Thus, as a non-invasive sampling method, feces provide a suitable matrix for studies on metabolism by the gut microbiota.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.