Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539625
Title Nutritional water productivity of selected leafy vegetables
Author(s) Nyathi, M.K.; Halsema, G.E. Van; Beletse, Y.G.; Annandale, J.G.; Struik, P.C.
Source Agricultural Water Management 209 (2018). - ISSN 0378-3774 - p. 111 - 122.
Department(s) Water Resources Management
Crop Physiology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) African leafy vegetables - Deficit irrigation - Hidden hunger - Indigenous leafy vegetables - Irrigation regimes - Micronutrient deficiency

The major challenge affecting rural resource-poor households (RRPHs) in South Africa is deficiencies in micronutrients (iron and zinc) and vitamin A. Traditional leafy vegetables (TLVs) are dense in iron, zinc, and β-carotene concentrations. Therefore, they are deemed suitable to improve the dietary diversity of RRPHs. The main objective of this study was to assess the effect of irrigation regimes on nutritional water productivity (NWP) of selected leafy vegetables [Amaranthus cruentus (Amaranth) and Cleome gynandra (Spider flower), both TLVs, and Beta vulgaris (Swiss chard)]. Experiments were conducted under a rain shelter at the ARC-VOP, Pretoria, South Africa, during two consecutive seasons (2013/14 and 2014/15). Leafy vegetables were subjected to three irrigation regimes [well-watered (I30), moderate water stress (I50), and severe water stress (I80)]. Data collected [(aboveground biomass (AGB), aboveground edible biomass (AGEB), actual evapotranspiration, and nutrient concentrations (iron, zinc and β-carotene)] were used to calculate NWP of leafy vegetables. Swiss chard exhibited a higher portion of AGEB compared to TLVs due to its larger harvest index (0.57-0.92). Selected TLVs displayed superiority in terms of nutrient richness compared to Swiss chard, under I50. Results indicated that TLVs could provide more than the daily-recommended nutrient intake (DRNI) for vitamin A to all age groups. For iron, Spider flower could supply more than the DRNI to infants between 1 and 3 years of age, whereas for zinc, it could supply approximately 11% to this age group. However, higher micronutrient and β-carotene concentrations did not translate to superior nutritional yield (NY). Swiss chard showed higher Fe-NY and Zn-NY, whereas TLVs were rich in β-carotene-NY. Similarly, Swiss chard demonstrated the highest Fe-NWP (1090 mg m−3) and Zn-NWP (125 mg m−3), whereas Amaranth was larger in β-carotene-NWP (1799 mg m−3), under moderate water stress. These results show that there may be an opportunity to improve NWP under drought conditions. There is a need for future studies that will assess NWP for a wider range of leafy vegetables. These studies should be conducted in different locations and explore the effect of management factors (fertiliser, water stress, planting density and planting date), and soil type on NWP of micronutrients and β-carotene.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.