Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539701
Title Accumulation of plastic debris and associated contaminants in aquatic food webs
Author(s) Diepens, N.J.; Koelmans, A.A.
Source Environmental Science and Technology 52 (2018)15. - ISSN 0013-936X - p. 8510 - 8520.
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract We present a generic theoretical model (MICROWEB) that simulates the transfer of microplastics and hydrophobic organic chemicals (HOC) in food webs. We implemented the model for an Arctic case comprised of nine species including Atlantic cod, with polar bear as top predator. We used the model to examine the effect of plastic ingestion on trophic transfer of microplastics and persistent HOCs (PCBs) and metabolizable HOCs (PAHs), spanning a wide range of hydrophobicities. In a scenario where HOCs in plastic and water are at equilibrium, PCBs biomagnify less when more microplastic is ingested, because PCBs biomagnify less well from ingested plastic than from regular food. In contrast, PAH biomagnify more when more microplastic is ingested, because plastic reduces the fraction of PAH available for metabolisation. We also explore non-equilibrium scenarios representative of additives that are leaching out, as well as sorbing HOCs, quantitatively showing how the above trends are strengthened and weakened, respectively. The observed patterns were not very sensitive to modifications in the structure of the food web. The model can be used as a tool to assess prospective risks of exposure to microplastics and complex HOC mixtures for any food web, including those with relevance for human health.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.