Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539748
Title Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs
Author(s) Marques, Daniele B.D.; Bastiaansen, John W.M.; Broekhuijse, Marleen L.W.J.; Lopes, Marcos S.; Knol, Egbert F.; Harlizius, Barbara; Guimarães, Simone E.F.; Silva, Fabyano F.; Lopes, Paulo S.
Source Genetics, Selection, Evolution 50 (2018)1. - ISSN 0999-193X
DOI https://doi.org/10.1186/s12711-018-0412-z
Department(s) WIAS
Animal Breeding and Genetics
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract

Background: In recent years, there has been increased interest in the study of the molecular processes that affect semen traits. In this study, our aim was to identify quantitative trait loci (QTL) regions associated with four semen traits (motility, progressive motility, number of sperm cells per ejaculate and total morphological defects) in two commercial pig lines (L1: Large White type and L2: Landrace type). Since the number of animals with both phenotypes and genotypes was relatively small in our dataset, we conducted a weighted single-step genome-wide association study, which also allows unequal variances for single nucleotide polymorphisms. In addition, our aim was also to identify candidate genes within QTL regions that explained the highest proportions of genetic variance. Subsequently, we performed gene network analyses to investigate the biological processes shared by genes that were identified for the same semen traits across lines. Results: We identified QTL regions that explained up to 10.8% of the genetic variance of the semen traits on 12 chromosomes in L1 and 11 chromosomes in L2. Sixteen QTL regions in L1 and six QTL regions in L2 were associated with two or more traits within the population. Candidate genes SCN8A, PTGS2, PLA2G4A, DNAI2, IQCG and LOC102167830 were identified in L1 and NME5, AZIN2, SPATA7, METTL3 and HPGDS in L2. No regions overlapped between these two lines. However, the gene network analysis for progressive motility revealed two genes in L1 (PLA2G4A and PTGS2) and one gene in L2 (HPGDS) that were involved in two biological processes i.e. eicosanoid biosynthesis and arachidonic acid metabolism. PTGS2 and HPGDS were also involved in the cyclooxygenase pathway. Conclusions: We identified several QTL regions associated with semen traits in two pig lines, which confirms the assumption of a complex genetic determinism for these traits. A large part of the genetic variance of the semen traits under study was explained by different genes in the two evaluated lines. Nevertheless, the gene network analysis revealed candidate genes that are involved in shared biological pathways that occur in mammalian testes, in both lines.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.