Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 539905
Title Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature
Author(s) Lürling, Miquel; Mello, Mariana Mendese; Oosterhout, Frank van; Senerpont Domis, Lisette de; Marinho, Marcelo M.
Source Frontiers in Microbiology 9 (2018)AUG. - ISSN 1664-302X
DOI https://doi.org/10.3389/fmicb.2018.01851
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Blooms - Climate change - Competition - Global warming - Optimum growth
Abstract

Eutrophication (nutrient over-enrichment) is the primary worldwide water quality issue often leading to nuisance cyanobacterial blooms. Climate change is predicted to cause further rise of cyanobacteria blooms as cyanobacteria can have a competitive advantage at elevated temperatures. We tested the hypothesis that simultaneous rise in nutrients and temperature will promote cyanobacteria more than a single increase in one of the two drivers. To this end, controlled experiments were run with seston from 39 different urban water bodies varying in trophic state from mesotrophic to hypertrophic. These experiments were carried out at two different temperatures, 20°C (ambient) and 25°C (warming scenario) with or without the addition of a surplus of nutrients (eutrophication scenario). To facilitate comparisons, we quantified the effect size of the different treatments, using cyanobacterial and algal chlorophyll a concentrations as a response variable. Cyanobacterial and algal chlorophyll a concentrations were determined with a PHYTO-PAM phytoplankton analyzer. Warming caused an 18% increase in cyanobacterial chlorophyll-α, while algal chlorophyll-α concentrations were on average 8% higher at 25°C than at 20°C. A nutrient pulse had a much stronger effect on chlorophyll-α concentrations than warming. Cyanobacterial chlorophyll-α concentrations in nutrient enriched incubations at 20 or 25°C were similar and 9 times higher than in the incubations without nutrient pulse. Likewise, algal chlorophyll-α concentrations were 6 times higher. The results of this study confirm that warming alone yields marginally higher cyanobacteria chlorophyll-α concentrations, yet that a pulse of additional nutrients is boosting blooms. The responses of seston originating from mesotrophic waters seemed less strong than those from eutrophic waters, which indicates that nutrient control strategies -catchment as well as in-system measures- could increase the resilience of surface waters to the negative effects of climate change.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.