Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 540627
Title Phase separation, antiplasticization and moisture sorption in ternary systems containing polysaccharides and polyols
Author(s) Sman, R.G.M. van der
Source Food Hydrocolloids 87 (2019). - ISSN 0268-005X - p. 360 - 370.
DOI https://doi.org/10.1016/j.foodhyd.2018.07.051
Department(s) VLAG
FBR Food Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Antiplasticization - phase separation - Sorption isotherm - Starch - Thermodynamics
Abstract

In this paper, we investigate whether the Flory-Huggins-Free-Volume (FHFV) theory can describe the rich thermodynamics of the ternary mixtures of starch, polyol, and water. These systems exhibit 1) non-monotonic moisture sorption with increasing plasticizer concentration, 2) phase separation, and 3) antiplasticization. After extending the FHFV theory with 1) the proper formulation of the chemical potential of water and polyol, and 2) the proper composition dependency of the interaction parameter between starch and water, the theory is well able to describe the above described complex thermodynamic behavior, showing good agreement with experimental data. Furthermore, our analysis shows that phase separation can already occur when the ternary mixture is still in the glassy state. Overall, the phase separation happens after the antiplasticization/plasticization transition, which can be linked to the minimum in moisture sorption, when increasing the polyol concentration at equal water activity. We think that the extended theory will become an important tool for analysis and design of complex food materials, pharmaceutical systems, and biopolymeric films having carbohydrates as plasticizers.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.