Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 540663
Title State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core
Author(s) Ranjbar Choubeh, Reza; Wientjes, Emilie; Struik, Paul C.; Kirilovsky, Diana; Amerongen, Herbert van
Source Biochimica et Biophysica Acta. B, Bioenergetics 1859 (2018)10. - ISSN 0005-2728 - p. 1059 - 1066.
DOI https://doi.org/10.1016/j.bbabio.2018.06.008
Department(s) Biophysics
EPS
Crop Physiology
PE&RC
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Cyanobacteria - Photosystem II - State transitions - Time-resolved fluorescence spectroscopy
Abstract

Cyanobacteria use chlorophyll and phycobiliproteins to harvest light. The resulting excitation energy is delivered to reaction centers (RCs), where photochemistry starts. The relative amounts of excitation energy arriving at the RCs of photosystem I (PSI) and II (PSII) depend on the spectral composition of the light. To balance the excitations in both photosystems, cyanobacteria perform state transitions to equilibrate the excitation energy. They go to state I if PSI is preferentially excited, for example after illumination with blue light (light I), and to state II after illumination with green-orange light (light II) or after dark adaptation. In this study, we performed 77-K time-resolved fluorescence spectroscopy on wild-type Synechococcus elongatus 7942 cells to measure how state transitions affect excitation energy transfer to PSI and PSII in different light conditions and to test the various models that have been proposed in literature. The time-resolved spectra show that the PSII core is quenched in state II and that this is not due to a change in excitation energy transfer from PSII to PSI (spill-over), either direct or indirect via phycobilisomes.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.