Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 540859
Title Soil food web assembly and vegetation development in a glacial chronosequence in Iceland
Author(s) Leeuwen, J.P. van; Lair, G.J.; Gísladóttir, G.; Sandén, T.; Bloem, J.; Hemerik, L.; Ruiter, P.C. de
Source Pedobiologia 70 (2018). - ISSN 0031-4056 - p. 12 - 21.
DOI https://doi.org/10.1016/j.pedobi.2018.08.002
Department(s) Biometris (WU MAT)
PE&RC
Alterra - Animal ecology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Ecosystem functioning - Glacial succession - Iceland - Soil food web structure - Vegetation development
Abstract

Worldwide human activities threaten soil quality in terms of the soil's ability to deliver ecosystem services. This ongoing process of land degradation asks for effective strategies of soil protection. In this context, it is important to understand processes that build up and regenerate soil. The present study investigated how the soil ecosystem, including soil organisms, vegetation and soil ecological processes, develops during the process of soil formation in a chronosequence in a glacier forefield in Iceland. We hypothesised that along successional age we see increases in nutrient content, vegetation cover, and plant species richness linked to increases in soil food webs biomass and complexity. In line with our expectations all measured pools of carbon and nitrogen, and vegetation cover increased with age in the glacial forefield, but plant species richness levelled off after 30 years. Soil organisms generally increased in biomass with successional age, although some of the groups of soil organisms peaked at an intermediate successional stage. In contrast to our expectations, some of the calculated food web complexity metrics such as the number of trophic groups and trophic chain length did not increase linearly, but showed an intermediate peak or even decreased with successional age. However, plant cover and pools of carbon and nitrogen still increased after 120 years. From these results we conclude that soil ecosystem development takes more than a century under Icelandic climatic conditions to fully develop in terms of vegetation succession, food web structure and biogeochemical cycling.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.