Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541017
Title Tomato disease resistances in the post-genomics era
Author(s) Bai, Yuling; Yan, Zhe; Moriones, E.; Fernández-Muñoz, R.
Source In: Proceedings of the 5th International Symposium on Tomato Diseases. - International Society for Horticultural Science (Acta Horticulturae ) - ISBN 9789462612037 - p. 1 - 17.
Event V International Symposium on Tomato Diseases, Málaga, 2016-06-13/2016-06-16
DOI https://doi.org/10.17660/ActaHortic.2018.1207.1
Department(s) EPS
Laboratory of Plant Breeding
Publication type Contribution in proceedings
Publication year 2018
Keyword(s) CRISPR/CAS9 - Effector target - Effector-assisted R gene identification - Gene editing - Mutagenesis - Recessive resistance - Resilience to combined stresses - TILLING
Abstract

Disease in tomato (Solanum lycopersicum) can be caused by many pathogenic organisms, including cellular pathogens (e.g., fungi, bacteria, phytoplasmas, oomycetes and nematodes) and non-cellular pathogens (e.g., viruses and viroids). To respond to pathogen attack, tomato plants, like other sessile organisms, have developed an immune system, where pathogen effectors and plant receptor proteins (e.g., resistance proteins) play a central role. With advances in the genomics era, our understanding of plant-pathogen interactions is evolving rapidly. For example, pathogen genomics has allowed a genome-wide study on the structure, function and evolution of effectors in pathogen genomes. So-called effectoromics offers a high-throughput functional approach to study effector-associated plant genes such as resistance (R) genes and susceptibility (S) genes. In tomato, “genome to germplasms” is facilitating a genome dimension to the exploration of plant diversity in resistance by sequencing and re-sequencing of genomes of available germplasm resources. Together with this breakthrough and powerful techniques for genome editing, novel strategies are being developed for breeding tomatoes with durable resistance to pathogens. Using examples of several tomato diseases, this review focuses on (1) layers of plant immune system, (2) the exploitation of plant S genes in resistance breeding, (3) rapid identification of R and S genes, and (4) novel routes for durable resistance to pathogens. Finally, the topic of breeding for resilience to combined biotic and abiotic stresses is discussed based on our results, which show extensive crosstalk between loci/pathways for resistance to pathogens and tolerance to abiotic stresses.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.