Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541078
Title CD-MUSIC-EDL modeling of Pb2+ adsorption on birnessites : Role of vacant and edge sites
Author(s) Zhao, Wei; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Liu, Fan; Weng, Liping; Koopal, Luuk K.
Source Environmental Science and Technology 52 (2018)18. - ISSN 0013-936X - p. 10522 - 10531.
DOI https://doi.org/10.1021/acs.est.8b02644
Department(s) WIMEK
Chair Soil Chemistry and Chemical Soil Quality
Physical Chemistry and Soft Matter
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) adsorption - Birnessite - CD-MUSIC Modeling - Electrical double layer model - External surface - Interlayer space - Manganese oxide - Mn average oxidation state - Pb - Rietveld refinement
Abstract

The surface complexation modeling of metal adsorption to birnessites is in its infancy compared to the charge-distribution multi-site ion complexation (CD-MUSIC) models for iron/aluminum (hydr)oxides. Therefore, using X-ray diffraction with Rietveld refinement to obtain the reactive sites and their densities, a CD-MUSIC model combined with a Stern-Gouy-Chapman electrical double layer (EDL) model for the external surface and a Donnan model for the interlayer surface is developed for birnessites with different Mn average oxidation state (MnAOS). Proton affinity constants and the charge distributions of Pb surface complexes were calculated a priory. By fitting Pb adsorption data to the model the obtained equilibrium constants (logKPb) of Pb complexes were 6.9-10.9 for the double-corner-sharing and double-edge-sharing Pb2+ complexes on the edge sites and 2.2-6.5 for the triple-corner-sharing Pb2+ complex on the vacancies. The larger logKPb value was obtained for higher MnAOS. Speciation calculations showed that with increasing MnAOS from 3.67 to 3.92 the interlayer surface contribution to the total Pb2+ adsorption increased from 43.2% to 48.6%, and the vacancy contribution increased from 43.9% to 54.7%. The vacancy contribution from interlayer surface was predominant. The present CD-MUSIC-EDL model contributes to understand better the difference in metal adsorption mechanism between birnessite and iron/aluminum (hydr)oxides.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.