Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541082
Title Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas
Author(s) Kosten, Sarian; Berg, Sanne van den; Mendonça, Raquel; Paranaíba, José R.; Roland, Fabio; Sobek, Sebastian; Hoek, Jamon Van Den; Barros, Nathan
Source Inland Waters : Journal of the International Society of Limnology 8 (2018)3. - ISSN 2044-2041 - p. 329 - 340.
DOI https://doi.org/10.1080/20442041.2018.1483126
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) drought - emission peaks - greenhouse gases - reservoirs - rewetting - sediment
Abstract

Although previous studies suggest that greenhouse gas (GHG) emissions from reservoir sediment exposed to the atmosphere during drought may be substantial, this process has not been rigorously quantified. Here we determined carbon dioxide (CO2) and methane (CH4) emissions from sediment cores exposed to a drying and rewetting cycle. We found a strong temporal variation in GHG emissions with peaks when the sediment was drained (C emissions from permanently wet sediment and drained sediments were, respectively, 251 and 1646 mg m−2 d−1 for CO2 and 0.8 and 547.4 mg m−2 d−1 for CH4) and then again during rewetting (C emissions from permanently wet sediment and rewetted sediments were, respectively, 456 and 1725mg m−2 d−1 for CO2 and 1.3 and 3.1 mg m−2 d−1 for CH4). To gain insight into the importance of these emissions at a regional scale, we used Landsat satellite imagery to upscale our results to all Brazilian reservoirs. We found that during the extreme drought of 2014–2015, an additional 1299 km2 of sediment was exposed, resulting in an estimated emission of 8.5 × 1011 g of CO2-eq during the first 15 d after the overlying water disappeared and in the first 33 d after rewetting, the same order of magnitude as the year-round GHG emissions of large (∼mean surface water area 454 km2) Brazilian reservoirs, excluding the emissions from the draw-down zone. Our estimate, however, has high uncertainty, with actual emissions likely higher. We therefore argue that the effects of drought on reservoir GHG emissions merits further study, especially because climate models indicate an increase in the frequency of severe droughts in the future. We recommend incorporation of emissions during drying and rewetting into GHG budgets of reservoirs to improve regional GHG emission estimates and to enable comparison between GHG emissions from hydroelectric and other electricity sources. We also emphasize that peak emissions at the onset of drought and the later rewetting should be quantified to obtain reliable emission estimates.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.