Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541201
Title Predicting soil microplastic concentration using vis-NIR spectroscopy
Author(s) Corradini, Fabio; Bartholomeus, Harm; Huerta Lwanga, Esperanza; Gertsen, Hennie; Geissen, Violette
Source Science of the Total Environment 650 (2019). - ISSN 0048-9697 - p. 922 - 932.
DOI https://doi.org/10.1016/j.scitotenv.2018.09.101
Department(s) Soil Physics and Land Management
Laboratory of Geo-information Science and Remote Sensing
PE&RC
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Microplastics - Near-infrared spectroscopy - Soil pollution - Spectroradiometer - Vis-NIR
Abstract

Microplastic accumulation in soil may have a detrimental impact on soil biota. The lack of standardized methods to identify and quantify microplastics in soils is an obstacle to research. Existing techniques are time-consuming and field data are seldom collected. To tackle the problem, we explored the possibilities of using a portable spectroradiometer working in the near infrared range (350–2500 nm) to rapidly assess microplastic concentrations in soils without extraction. Four sets of artificially polluted soil samples were prepared. Three sets had only one polymer polluting the soil (low-density polyethylene (LDPE), polyethylene terephthalate (PET), or polyvinyl chloride (PVC)). The fourth set contained random amounts of the three polymers (Mix). The concentrations of microplastics were regressed on the reflectance observed for each of the 2150 wavelengths registered by the instrument, using a Bayesian approach. For a measurement range between 1 and 100 g kg−1, results showed a root-mean-squared-deviation (RMSD) of 8, 18, and 10 g kg−1 for LDPE, PET, and PVC. The Mix treatment presented an RMSD of 8, 10, and 5 g kg−1 for LDPE, PET, and PVC. The repeatability of the proposed method was 0.2–8.4, 0.1–5.1, and 0.1–9.0 g kg−1 for LDPE, PET, and PVC, respectively. Overall, our results suggest that vis-NIR techniques are suitable to identify and quantify LDPE, PET, and PVC microplastics in soil samples, with a 10 g kg−1 accuracy and a detection limit ≈ 15 g kg−1. The method proposed is different than other approaches since it is faster because it avoids extraction steps and can directly quantify the amount of plastic in a sample. Nevertheless, it seems to be useful only for pollution hotspots.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.