Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541242
Title Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens)
Author(s) Barragan-Fonseca, Karol B.; Dicke, Marcel; Loon, Joop J.A. van
Source Entomologia Experimentalis et Applicata (2018). - ISSN 0013-8703 - p. 1 - 10.
Department(s) Laboratory of Entomology
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) detritivory - diet quality - Diptera - growth - nutritional value - ration - Stratiomyidae - survival

Performance and body composition of insect larvae depend on quality and quantity of their diet, and on biotic factors such as larval density. We investigated the effect of dietary nutrient concentration and larval rearing density on survival, development, growth, and protein and fat contents of larvae of the black soldier fly (BSF), Hermetia illucens L. (Diptera: Stratiomyidae). Neonate larvae were fed with a low (NC1), intermediate (NC2), or high nutrient concentration (NC3), and with four rearing densities (50, 100, 200, or 400 larvae per container). Two feeding regimes (FR) were tested: in FR1, the amount of diet added during the experiment was based on the visually estimated larval mass present, whereas in FR2, a fixed feeding ration of 0.6 g of food per larva was applied at the start. FR1 resulted in food limitation, resulting in significantly lower body crude protein content on diet NC1 than on NC2 at larval densities 100 and 200. Larval crude fat content was higher on diets with higher nutrient concentration and at lower larval densities. For FR2, development time was shorter on diets with higher nutrient concentration and at lower larval densities. Individual larval weight and total larval yield increased with higher nutrient concentration at all four larval densities. At lower nutrient concentration, higher larval density resulted in higher individual larval weight and total larval yield, revealing an interaction between larval density and dietary quality. Larval crude protein content was higher at lower densities and lower nutrient concentration. Larval crude fat was higher at higher larval densities and nutrient concentrations. This study indicates that larval protein content is regulated within narrow limits, whereas larval crude fat content is strongly affected by nutrient concentration and by larval density.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.