Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 541358
Title Influence of synthesis method on molybdenum carbide crystal structure and catalytic performance in stearic acid hydrodeoxygenation
Author(s) Souza Macedo, Luana; Oliveira, Ricardo R.; Haasterecht, Tomas van; Teixeira da Silva, Victor; Bitter, Harry
Source Applied Catalysis B-Environmental 241 (2019). - ISSN 0926-3373 - p. 81 - 88.
DOI https://doi.org/10.1016/j.apcatb.2018.09.020
Department(s) Biobased Chemistry and Technology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Crystal structure - Hydrodeoxygenation - Molybdenum carbide - Site density - Synthesis method
Abstract

The role of the synthesis method of molybdenum carbide nanoparticle catalysts supported on carbon nanofibers on crystal structure and on catalytic performance in hydrodeoxygenation of stearic acid was investigated. We obtained the cubic phase of molybdenum carbide (α-MoC1-x) by impregnating carbon nanofibers with a solution of (NH4)2MoO4, then exposing them to 20% CH4/H2 at 650 °C for 2 h. When increasing the Mo loading from 7.5 wt% to 20 wt% or using the carbothermal reduction method, i.e. using carbon from the support to reduce the (NH4)2MoO4 precursor at 800 °C for 6 h, the hexagonal phase (β-Mo2C) resulted. Experiments with stearic acid hydrodeoxygenation showed that both phases (7.5 wt% Mo) displayed similar intrinsic activities. However, α-MoC1-x/CNF reached 80% stearic acid conversion after 240 min while the β-Mo2C/CNF catalyst attained the same conversion after 360 min. CO chemisorption results showed that α-MoC1-x/CNF and β-Mo2C/CNF have a similar number of potential active sites (66 and 56 μmol g−1, respectively). We attribute the difference in catalytic performance between α-MoC1-x/CNF and β-Mo2C/CNF to differences in the catalyst's crystal structure, more specifically, the associated site density. The face-centered cubic α-MoC1-x/CNF has a lower site density (0.1096 Mo atoms Ų) than the hexagonal close-packed β-Mo2C/CNF (0.1402 Mo atoms Ų), making the Mo atoms at the surface of the α-MoC1-x phase more accessible for large reactant molecules such as stearic acid thus allowing its convertion in shorter times.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.