Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541402
Title Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China
Author(s) Feng, Jiguang; Wang, Jingsheng; Song, Yanjun; Zhu, Biao
Source Biogeosciences 15 (2018)17. - ISSN 1726-4170 - p. 5329 - 5341.
DOI https://doi.org/10.5194/bg-15-5329-2018
Department(s) Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Abstract

Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q10 value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm, tropical grassland. Results showed that the mean (±SE) annual Rs was 582.0±57.9 g C mg-2 yrg-1 across Chinese grasslands. Annual Rs significantly differed among grassland types, and was positively correlated with mean annual temperature, mean annual precipitation, soil temperature, soil moisture, soil organic carbon content, and aboveground biomass, but negatively correlated with soil pH (p < 0.05). Among these factors, mean annual precipitation was the primary factor controlling the variation of annual Rs among grassland types. Based on the overall data across Chinese grasslands, the Q<10 values ranged from 1.03 to 8.13, with a mean (±SE) of 2.60±0.08. Moreover, the Q< 10 values varied largely within and among grassland types and soil temperature measurement depths. Among grassland types, the highest Q<10 derived by soil temperature at a depth of 5 cm occurred in alpine grasslands. In addition, the seasonal variation of soil respiration in Chinese grasslands generally cannot be explained well by soil temperature using the van't Hoff equation. Overall, our findings suggest that the combined factors of soil temperature and moisture would better predict soil respiration in arid and semi-arid regions, highlight the importance of precipitation in controlling soil respiration in grasslands, and imply that alpine grasslands in China might release more carbon dioxide to the atmosphere under climate warming.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.