Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541501
Title Effects of Stigeoclonium nanum, a freshwater periphytic microalga on water quality in a small-scale recirculating aquaculture system
Author(s) Mohamed Ramli, Norulhuda; Yusoff, Fatimah M.; Giatsis, Christos; Tan, Geok Yuan A.; Verreth, Johan A.J.; Verdegem, Marc C.J.
Source Aquaculture Research 49 (2018)11. - ISSN 1355-557X - p. 3529 - 3540.
DOI https://doi.org/10.1111/are.13818
Department(s) Aquaculture and Fisheries
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) ammonia - bacterial community - microalgae - nitrate - recirculating aquaculture system - Stigeoclonium nanum - water quality
Abstract

Recirculating aquaculture systems (RAS) are becoming important for aquaculture due to land and water supply limitations and due to their low environmental impact. Bacteria are important in RAS as their role in nutrient recycling has been the main mechanism for waste removal in these systems. Besides bacteria, the presence of microalgae can benefit the water quality through the absorption of inorganic nitrogen (ammonium and nitrate) and phosphorus from the water. However, reports on the inclusion of microalgae in RAS are very scarce. The objective of this study was to determine the effect of microalgae on water quality (total ammonia nitrogen, nitrite, nitrate and phosphate) and bacterial composition in a freshwater small-scale RAS. A periphytic microalga, Stigeoclonium nanum, was used in this study. A rapid fingerprint analysis, denaturing gradient gel electrophoresis (DGGE), was used to determine the bacterial community composition in the water. The results showed that ammonia concentrations were not significantly different (p > 0.05) between RAS with microalgae (RAS+A) and RAS without microalgae (RAS-A). However, nitrite, nitrate and phosphate were significantly lower in the RAS+A than the RAS-A (p < 0.05). Pielou's evenness and Shannon diversity index of bacterial community between the treatments were not different (p > 0.05); however, the bacterial composition between the treatments was significantly different (p < 0.05).

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.