Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 541544
Title Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals : Effect on Interfacial Rheology and Structure
Author(s) Berg, Merel E.H. van den; Kuster, Simon; Windhab, Erich J.; Adamcik, Jozef; Mezzenga, Raffaele; Geue, Thomas; Sagis, Leonard M.C.; Fischer, Peter
Source Langmuir 34 (2018)37. - ISSN 0743-7463 - p. 10932 - 10942.
Department(s) VLAG
Physics and Physical Chemistry of Foods
Microbiological Laboratory
Publication type Refereed Article in a scientific journal
Publication year 2018

Cellulose nanocrystals (CNCs) are an emerging natural material with the ability to stabilize fluid/fluid interfaces. Native CNC is hydrophilic and does not change the interfacial tension of the stabilized emulsion or foam system. In this study, rodlike cellulose particles were isolated from hemp and chemically modified to alter their hydrophobicity, i.e., their surface activity, which was demonstrated by surface tension measurements of the particles at the air/water interface. The buildup and mechanical strength of the interfacial structure were investigated using interfacial shear and dilatational rheometry. In contrast to most particle or protein-based interfacial adsorption layers, we observe in shear flow a Maxwellian behavior instead of a glasslike frequency response. The slow and reversible buildup of the layer and its unique frequency dependence indicate a weakly aggregated system, which depends on the hydrophobicity and, thus, on the contact angle of the CNC particles at the air/water interface. Exposed to dilatational flow, the weakly aggregated particles cluster and form compact structures. The interfacial structure generated by the different flow fields is characterized by the contact angle, immersion depth, and layer roughness obtained by neutron reflectometry with contrast variation while the size and local structural arrangement of the CNC particles were investigated by AFM imaging.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.