Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 543221
Title Testing three approaches to estimate soil evaporation through a dry soil layer in a semi-arid area
Author(s) Balugani, E.; Lubczynski, M.W.; Tol, C. van der; Metselaar, K.
Source Journal of Hydrology 567 (2018). - ISSN 0022-1694 - p. 405 - 419.
DOI https://doi.org/10.1016/j.jhydrol.2018.10.018
Department(s) WIMEK
Soil Physics and Land Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Arid - Dry soil layer - Semi-arid - Soil evaporation - Water vapour flow
Abstract

Bare soils and grasslands in arid and semi-arid conditions constitute a large portion of the earth surface. Evaporation, which is the main component of the water balance in these conditions, often takes place through a dry soil layer (DSL). There is no scientific agreement yet on the DSL effects on evaporation rates. The implementations of three conceptual models of DSL-evaporation were tested for the simulation of evaporation rates in a semi-arid study area in Central Spain: (i) the daily-average model, based on the assumption that the daily average vapour transport in a DSL can be represented in analogy to isothermal liquid flow; (ii) the numerical model solving the Richards equation, in this case HYDRUS1D was used; and (iii) the pore-scale model, based on soil column experiments in laboratory conditions. The evaporation rates estimated by the three conceptual models for semi-arid field conditions were compared with the evaporation rates measured by an eddy covariance tower in the same area. The results indicate that the daily-average conceptual model assumption, in which the DSL has no effects on evaporation, does not hold in very dry conditions. The numerical model solving the Richards equation was not able to simulate the effects of the DSL on evaporation rates. The evaporation estimates obtained by the pore-scale conceptual model were closest to the eddy covariance measurements during the dry season, however this model was applicable only to the relatively steady evaporation conditions during afternoons and only assuming spatially constant DSL thickness.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.