Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 543483
Title Metabolite variation in the lettuce gene pool : towards healthier crop varieties and food
Author(s) Treuren, Rob van; Eekelen, Henriette D.L.M. van; Wehrens, Ron; Vos, Ric C.H. de
Source Metabolomics 14 (2018)11. - ISSN 1573-3882
DOI https://doi.org/10.1007/s11306-018-1443-8
Department(s) PPO/PRI WOT CGN
PRI BIOS Applied Metabolic Systems
Biometris (PPO/PRI)
Biometris (WU MAT)
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Crop improvement - Genetic resources - Lettuce - Phytochemical variation - Untargeted metabolomics - Vitamin C
Abstract

Introduction: Lettuce (Lactuca sativa L.) is generally not specifically acknowledged for its taste and nutritional value, while its cultivation suffers from limited resistance against several pests and diseases. Such key traits are known to be largely dependent on the ability of varieties to produce specific phytochemicals. Objectives: We aimed to identify promising genetic resources for the improvement of phytochemical composition of lettuce varieties. Methods: Phytochemical variation was investigated using 150 Lactuca genebank accessions, comprising a core set of the lettuce gene pool, and resulting data were related to available phenotypic information. Results: A hierarchical cluster analysis of the variation in relative abundance of 2026 phytochemicals, revealed by untargeted metabolic profiling, strongly resembled the known lettuce gene pool structure, indicating that the observed variation was to a large extent genetically determined. Many phytochemicals appeared species-specific, of which several are generally related to traits that are associated with plant health or nutritional value. For a large number of phytochemicals the relative abundance was either positively or negatively correlated with available phenotypic data on resistances against pests and diseases, indicating their potential role in plant resistance. Particularly the more primitive lettuces and the closely related wild relatives showed high levels of (poly)phenols and vitamin C, thus representing potential genetic resources for improving nutritional traits in modern crop types. Conclusion: Our large-scale analysis of phytochemical variation is unprecedented in lettuce and demonstrated the ample availability of suitable genetic resources for the development of improved lettuce varieties with higher nutritional quality and more sustainable production.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.