Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 543612
Title Lessons learned from monitoring the stable water isotopic variability in precipitation and streamflow across a snow-dominated subarctic catchment
Author(s) Lyon, Steve W.; Ploum, Stefan W.; Velde, Ype van der; Rocher-Ros, Gerard; Mörth, Carl Magnus; Giesler, Reiner
Source Arctic, Antarctic and Alpine Research 50 (2018)1. - ISSN 1523-0430
DOI https://doi.org/10.1080/15230430.2018.1454778
Department(s) Hydrology and Quantitative Water Management
Publication type Refereed Article in a scientific journal
Publication year 2018
Keyword(s) Catchment hydrology - freshet - spring flood - stable water isotopes - tracers
Abstract

This empirical study explores shifts in stable water isotopic composition for a subarctic catchment located in northern Sweden as it transitions from spring freshet to summer low flows. Relative changes in the isotopic composition of streamflow across the main catchment and fifteen nested subcatchments are characterized in relation to the isotopic composition of precipitation. With our sampling campaign, we explore the variability in stream-water isotopic composition that originates from precipitation as the input shifts from snow to rain and as landscape flow pathways change across scales. The isotopic similarity of high-elevation snowpack water and early season rainfall water seen through our sampling scheme made it difficult to truly isolate the impact of seasonal precipitation phase change on stream-water isotopic response. This highlights the need to explicitly consider the complexity of arctic and alpine landscapes when designing sampling strategies to characterize hydrological variability via stable water isotopes. Results show a potential influence of evaporation and source water mixing both spatially (variations with elevation) and temporally (variations from post-freshet to summer flows) on the composition of stream water across Miellajokka. As such, the data collected in this empirical study allow for initial conceptualization of the relative importance of, for example, hydrological connectivity within this mountainous, subarctic landscape.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.