Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 552224
Title Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks
Author(s) Jaarsma, Ryanne I.; Sprong, Hein; Takumi, Katsuhisa; Kazimirova, Maria; Silaghi, Cornelia; Mysterud, Atle; Rudolf, Ivo; Beck, Relja; Földvári, Gábor; Tomassone, Laura; Groenevelt, Margit; Everts, Reinard R.; Rijks, Jolianne M.; Ecke, Frauke; Hörnfeldt, Birger; Modrý, David; Majerová, Karolina; Votýpka, Jan; Estrada-Peña, Agustín
Source Parasites & Vectors 12 (2019). - ISSN 1756-3305
DOI https://doi.org/10.1186/s13071-019-3583-8
Department(s) Laboratory of Entomology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Anaplasma phagocytophilum - Ixodidae - Molecular epidemiology - Network analysis - Ticks - Transmission dynamics
Abstract

Background: Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indicate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using phylogenetic and network-based methods. Methods: The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A fragment of the groEl gene was amplified and sequenced from qPCR-positive lysates. Additional groEl sequences from ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network-based methods were used to resolve host-vector interactions and their relative importance in the segregating communities of haplotypes. Results: Phylogenetic analyses resulted in 199 haplotypes within eight network-derived clusters, which were allocated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visualized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communities of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions and shaped separate communities. Conclusions: The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and associations of haplotypes to particular vector-host interactions. Further research is needed to understand the circulation of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes through yet unknown relationships.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.