Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 552295
Title Extraction, gelation and microstructure of Bambara groundnut vicilins
Author(s) Diedericks, C.F.; Koning, Linda de; Jideani, Victoria A.; Venema, P.; Linden, E. van der
Source Food Hydrocolloids 97 (2019). - ISSN 0268-005X
DOI https://doi.org/10.1016/j.foodhyd.2019.105226
Department(s) Physics and Physical Chemistry of Foods
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Bambara groundnut - Vicilin - Plant protein - Fractal dimension - Scaling
Abstract Nowadays there is a growing interest in exploiting new sources of plant proteins as functional ingredients in food products. In recent years, Bambara groundnut (Vigna subterranea (L.) Verdc.) [BGN] has been explored as such a potential plant protein source, as a means of value-addition to this leguminous crop. To elucidate on the macroscopic functionality of BGN protein isolates, the focus of our study was on the extraction and characterisation of the vicilin protein fraction as the known major storage protein present in legume seeds. BGN vicilin had a high protein content (91%) and formed the largest component in relation to the other protein fractions. Together with molecular weight profiles obtained with gel electrophoresis and size-exclusion chromatography coupled with light scattering, the purity of vicilin and its presence as the predominant protein fraction in BGN black-eye seeds were confirmed. The isoelectric point (pH 5.3), solubility profile (highest solubility 86% at NaCl concentrations above 200 mM) and thermal denaturation temperature (92 °C) of BGN vicilin correspond to the range reported for other legume vicilins. Furthermore, the gelation behaviour of BGN vicilin gels was investigated using dynamic oscillatory measurements. These data were further analysed with scaling models, which revealed that fractal scaling was best suited for description of the BGN vicilin gel networks. The gel microstructures were visualised with confocal laser scanning and scanning electron microscopy.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.