Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 552649
Title Moisture diffusivity in concentrated and dry protein-carbohydrate films
Author(s) Siemons, I.; Boom, R.M.; Sman, R.G.M. van der; Schutyser, M.A.I.
Source Food Hydrocolloids 97 (2019). - ISSN 0268-005X
DOI https://doi.org/10.1016/j.foodhyd.2019.105219
Department(s) Food Process Engineering
VLAG
Food Technology
Publication type Refereed Article in a scientific journal
Publication year 2019
Keyword(s) Casein - Free volume - Maltodextrin - Moisture diffusion coefficient - Thin film drying - Whey protein
Abstract

Understanding moisture diffusivity behaviour over a wide range of moisture contents is pivotal for optimising drying operations. Generally, data on moisture diffusivity are scarce and the effect of matrix composition on moisture diffusivity at relevant temperature for drying processes is not yet well described. In this paper moisture diffusivity in protein-carbohydrate films is systematically investigated for a wide range of moisture contents at 80 °C. Diffusion data are obtained from controlled thin film drying experiments following the regular regime method and compared to theoretical models. Moisture diffusivity for binary maltodextrin-water and whey protein-water systems appeared similar and were reasonably well described with the Darken relation. Diffusivity was lower for casein-water systems at moisture contents above 0.15 kg water/kg, which may be explained by compartmentalization of water in the casein micelles. At low moisture contents all binary systems showed universal behaviour, which may be explained by random coil behaviour leading to similar water-molecule interactions. This behaviour could be well described by free-volume theory. In mixed systems of proteins and carbohydrates moisture diffusivity appeared strongly influenced by the presence of casein, probably due to their high voluminosity. Finally, it was surprisingly observed that diffusivity in multicomponent systems decreased sharply at lower water contents when compared to binary systems. This might be explained by a denser molecular packed system in the dry regime for multicomponent systems or water trapping by protein-carbohydrate complexes.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.