Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 62557
Title Remediation of soils, sediments and sludges by extraction with organic solvents
Author(s) Noordkamp, E.R.
Source Agricultural University. Promotor(en): W.H. Rulkens; Tim Grotenhuis. - S.l. : S.n. - ISBN 9789058080714 - 143
Department(s) Sub-department of Environmental Technology
WIMEK
Publication type Dissertation, internally prepared
Publication year 1999
Keyword(s) slib - volksgezondheidsbevordering - aromatische koolwaterstoffen - aceton - oplosmiddelen - extractie - waterbodems - sludges - sanitation - aromatic hydrocarbons - acetone - solvents - extraction - water bottoms
Categories Soil Pollution / Environmental Engineering
Abstract <p>Remediation of contaminated soils, sediments and sludges by extraction with organic solvents is still in the initial stages of development. So far hardly any scientific research has been carried out into this approach. Therefore, the main objective of the present investigation was to study the effect of several process parameters on the efficiency of the extraction step of a solvent extraction process for soils, sediments and sludges (generally indicated as solids) contaminated with polycyclic aromatic hydrocarbons (PAHs). The process parameters of interest were: type of solvent, extraction time, extraction procedure, water content of the extraction solvent, type of solids, size of the solid particles, and water content of the solids.</p><p>In the development of a remediation method, a critical factor is the analysis of the PAH concentration in the solids. Therefore, several extraction methods were investigated to remove PAHs from an aged sandy soil, a harbour sediment and an extraction sludge. Extraction with N-methyl-2-pyrrolidinone in a microwave oven at 130°C for one hour was the most efficient method for the extraction of PAHs. The second best method was extraction with a mixture of 80 vol.% acetone and 20 vol.% water in a microwave oven at 100°C for one hour.</p><p>Acetone is suitable for use in a solvent extraction process, because it is less toxic than most other organic solvents, easily biodegradable, and socially acceptable in the Netherlands. In addition, it showed high removal efficiencies in the extraction of spiked pyrene and benzo[a]pyrene from sandy, silty and clayey soils, even when water was present in the soil or extraction agent. In the extraction of air-dried soil with mixtures of acetone and water, maximum efficiencies were reached with 10 to 20 vol.% water in the mixture.</p><p>To determine the extraction efficiency of a mixture of 80 vol.% acetone and 20 vol.% water, a procedure comprising seven extraction steps was carried out at 20°C using a rotary tumbler for mixing. In this way, an aged extraction sludge and an aged harbour sediment were remediated. After seven extractions, the Dutch target level established for clean soil was reached in the sludge and almost reached in the sediment. The PAH concentrations decreased from about 1,000 mg kg <sup>-1</SUP>in the sludge and about 650 mg kg <sup>-1</SUP>in the sediment to about 2 mg kg <sup>-1</SUP>in both the sludge and the sediment. Of the PAHs studied, those of low molecular weight (phenanthrene, anthracene and fluoranthene) were found to be most difficult to remove from the solids.</p><p>Another important aspect of the extraction process is the rate at which PAHs are removed. Experiments revealed that about 90% of the PAHs concerned were desorbed from the aged sludge within 10 minutes of extraction with a mixture of 80 vol.% acetone and 20 vol.% water. Within 40 minutes, at least 95% of the PAHs concerned were removed from the sludge and the extraction was then assumed to be complete. The experimental desorption curves were fitted by means of a radial diffusion model and a first-order reaction model. The diffusion model fitted the curves best for a situation in which it is assumed that the PAH contamination is accumulated in the core of the sludge particles.</p><p>Because of the high extraction efficiencies and high desorption rates attained, realisation of the solvent extraction process with acetone is probably worthwhile. This process is especially suitable for the remediation of sediments and sludges containing high amounts of water and clay and contaminated with barely (bio)available or biodegradable organic contaminants.</p>
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.