Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 65723
Title Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans
Author(s) Olthof, M.; Hollman, P.C.H.; Vree, T.B.; Katan, M.B.
Source The Journal of Nutrition 130 (2000). - ISSN 0022-3166 - p. 1200 - 1203.
Department(s) Human Nutrition (HNE)
RIKILT
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract The flavonoid quercetin is an antioxidant which occurs in foods mainly as glycosides. The sugar moiety in quercetin glycosides affects their bioavailability in humans. Quercetin-3-rutinoside is an important form of quercetin in foods, but its bioavailability in humans is only 20␘f that of quercetin-4'-glucoside. Quercetin-3-rutinoside can be transformed into quercetin-3-glucoside by splitting off a rhamnose molecule. We studied whether this 3-glucoside has the same high bioavailability as the quercetin-4'-glucoside. To that end we fed five healthy men and four healthy women (19–57 y) a single dose of 325 ?mol of pure quercetin-3-glucoside and a single dose of 331 ?mol of pure quercetin-4'-glucoside and followed the plasma quercetin concentrations. The bioavailability was the same for both quercetin glucosides. The mean peak plasma concentration of quercetin was 5.0 ± 1.0 ?mol/L (±SE) after subjects had ingested quercetin-3-glucoside and 4.5 ± 0.7 ?mol/L after quercetin-4'-glucoside consumption. Peak concentration was reached 37 ± 12 min after ingestion of quercetin-3-glucoside and 27 ± 5 min after quercetin-4'-glucoside. Half-life of elimination of quercetin from blood was 18.5 ± 0.8 h after ingestion of quercetin-3-glucoside and 17.7 ± 0.9 h after quercetin-4'-glucoside. We conclude that quercetin glucosides are rapidly absorbed in humans, irrespective of the position of the glucose moiety. Conversion of quercetin glycosides into glucosides is a promising strategy to enhance bioavailability of quercetin from foods.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.