Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 66023
Title Physical constraints on body size in teleost embryos
Author(s) Kranenbarg, S.; Muller, M.; Gielen, J.L.W.; Verhagen, J.H.G.
Source Journal of Theoretical Biology 204 (2000). - ISSN 0022-5193 - p. 113 - 133.
Department(s) Experimental Zoology
Hydrology and Quantitative Water Management
Biometris (WU MAT)
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract All members of the subphylum "Vertebrata" display the characteristics of the vertebrate body plan. These characteristics become apparent during the phylotypic period, in which all vertebrate embryos have a similar body shape and internal organization. Phylogenetic constraints probably limit the morphological variation during the phylotypic period. Physical laws, however, also limit growth and morphogenesis in embryos. We investigated to what extent oxygen availability—as a physical constraint—might limit morphological variation during embryonic development. This paper gives an analysis of time-dependent diffusion into spherical embryos without a circulatory system. Equilibrium appeared to settle in about 1.5 min in running water and in about 10min in stagnant water. Hence, steady-state conditions were assumed and expressions for maximum body size were obtained for spherical, cylindrical and sheet-like embryos in running water and spherical embyros in stagnant water. Predictions of the model based on literature data suggest that in running water—both for spherical, cylindrical and sheet-like embryos—diffusion alone suffices to cover the oxygen needs of a teleost embryo in its phylotypic period. The size of carp (Cyprinus carpio) and African catfish (Clarias gariepinus) embryos is very close to the predicted maximum. This suggests that in these species the development of a functional circulatory system is correlated with the onset of oxygen shortage. Oxygen availability is therefore a potentially important physical constraint on embryonic morphology, though in most species the circulatory system becomes functional well in advance of the onset of oxygen shortage and other demands than oxygen delivery (e.g. nutrient distribution, waste disposal, osmoregulation) might require the development of a circulatory system.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.