Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 66213
Title Analysis of compression of polymer mushrooms using self-consistent field theory
Author(s) Steels, B.M.; Leermakers, F.A.M.; Haynes, C.A.
Source Journal of chromatography. B, Biomedical sciences and applications 743 (2000). - ISSN 1387-2273 - p. 31 - 40.
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract A number of new technologies, including new-generation biomaterials and chromatography resins, are based on passivation and modification of surfaces by terminally attaching polymer chains to the surface. However, little is known about these systems at the molecular level. In this work the compression of a single end-grafted polymer chain (or mushroom) by a disc of finite radius was investigated using a self-consistent field (SCF) lattice model. In accordance with results predicted using scaling theory [Subramanian et al., Europhys. Lett. 29 (1995) 285 and Macromolecules 29 (1996) 4045], the compressed chain undergoes a smooth escape transition. However, under the assumption of angular symmetry, a first-order escape transition of the end-grafted chain is not observed, suggesting that the formation of a tether is required for the predicted phase transition. Segment density distributions and compression energies are calculated in a cylindrical lattice. The energy required to compress a chain increases monotonically as the disc is moved closer to the surface and becomes independent of chain length at strong compressions where the work of compression involves only confinement of the tether joining the escaped chain fraction to the grafting point.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.