Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 66580
Title Modeling selection for production traits under constant infection pressure
Author(s) Waaij, E.H. van der; Bijma, P.; Bishop, S.C.; Arendonk, J.A.M. van
Source Journal of Animal Science 78 (2000). - ISSN 0021-8812 - p. 2809 - 2820.
Department(s) Animal Breeding and Genetics
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract This article presents a model describing the relationship between level of disease resistance and production under constant infection pressure. The model assumes that given a certain infection pressure, there is a threshold for resistance below which animals will stop producing, and that there is also a threshold for resistance above which animals produce at production potential. In between both thresholds animals will show a decrease in production, the size of decrease depending on the severity of infection and the level of resistance. The dynamic relationship between production and resistance when level of resistance changes, such as due to infection, is modeled both stochastically and deterministically. Selection started in a population with very poor level of resistance introduced in an environment with constant infection pressure. Mass selection on observed production was applied, which resulted in a nonlinear selection response for all three traits considered. When resistance is poor, selection for observed production results in increased level of resistance. With increasing level of resistance, selection response shifts to production potential and eventually selection for observed production is equivalent to selection for production potential. The rate at which resistance is improved depends on its heritability, the difference between both thresholds, and selection intensity. The model also revealed that when a zero correlation between resistance and production potential is assumed, the phenotypic correlation between resistance and observed production level increases for low levels of resistance and subsequently asymptotes to zero, whereas the phenotypic correlation between production potential and observed production asymptotes to 1.0. For most breeding schemes investigated, the deterministic model performed well in relation to the stochastic simulation results. Experimental results reported in literature support the model predictions.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.