Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 66895
Title Modelling weed emergence patterns in arable weeds
Author(s) Vleeshouwers, L.M.; Kropff, M.J.
Source New Phytologist 148 (2000). - ISSN 0028-646X - p. 445 - 457.
Department(s) Crop and Weed Ecology
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract A model was developed to simulate weed emergence patterns after soil cultivation. In the model, the consecutive processes of dormancy release, germination and pre-emergence growth were modelled in separate modules. Input variables of the model were: date of soil cultivation, soil temperature and soil penetration resistance. Output variables of the model were: seedling density and timing of seedling emergence. The model was parameterized for Polygonum persicaria, Chenopodium album and Spergula arvensis with data from previous field and laboratory experiments. The model was evaluated with data from an experiment, in which emergence of P. persicaria, C. album and S. arvensis was monitored in field plots that were cultivated once only, at one of five dates in the spring. At the same time as the field observations on seedling emergence, seasonal changes in seed dormancy of the buried weed seeds were assessed by testing the germination of seed lots that were buried in envelopes. From a comparison between field observations and simulated data, it appeared that the model overestimated the rate of dormancy release in spring, whereas germination and pre-emergence growth were simulated well. In general, therefore, both the numbers of emerging seedlings and the timing of emergence could be predicted accurately, when dormancy was not simulated but introduced from experimental data. Improvement of predictions of field emergence of weeds should mainly focus on increasing the precision of the simulation of dormancy release. Close correlations were found between seedbed temperature and both the extent and rate of seedling emergence, but analysis with the simulation model revealed that they were only partly based on causal relationships, so that they have limited predictive value.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.