Are TRISOPLAST barriers sustainable?

Appendices
Are TRISOPLAST barriers sustainable?

An evaluation of old barriers in landfill caps

Appendices

Dethmer Boels
Stefan Melchior
Bernd Steinert

Alterra-report 541-appendices

Alterra, Green World Research, Wageningen, 2003
ABSTRACT

ISSN 1566-7197

This report can be ordered by paying € 47,- into bank account number 36 70 54 612 in the name of Alterra, Wageningen, the Netherlands, with reference to report 541-appendices. This amount is inclusive of VAT and postage.

© 2003 Alterra, Green World Research,
Alterra, Green World Research,
P.O. Box 47, NL-6700 AA Wageningen (The Netherlands).
Phone: +31 317 474700; fax: +31 317 419000; e-mail: info@alterra.nl
melchior + wittpohl Ingenieurgesellschaft
Karolinenstr. 6, D-20357, Hamburg (Germany)
Phone: +49 40 430 9500; fax +49 40 430 95020; e-mail: info@mplusw.de

No part of this publication may be reproduced or published in any form or by any means, or stored in a data base or retrieval system, without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of this document.
Contents

Appendices

1. Soil Profile Description 7
2. Photo documentation 19
3. Micromorphological survey of Trisoplast- and Drainage-Layers by Thin Sections 71
4. Surface Structures of Trisoplast taken by Scanning Electron Microscope (SEM) 81
5. Soil Water Retention of Trisoplast and the Adjoining Layers 95
6. Protocol for the measurement of saturated hydraulic conductivity of undisturbed samples (Alterra, Wageningen, The Netherlands) and observed permeability 109
7. Chemical Analysis of Topsoil and Drainage Layer 115
8. Chemical composition of pore water 119
appendix 1

Soil Profile Description

Contents

Methods 9

Profile 1, Landfill Rotterdam Europoort (EUR 1) 11
Profile 2, Landfill Rotterdam Europoort (EUR 2) 12
Profile 3, Protection pan, VOPAK petrol depot, Rotterdam (VOP 3) 13
Profile 4, Landfill Almere (ALM 4) 15
Profile 5, Landfill Almere (ALM 5) 16
Profile 6, Landfill Soesterberg, Amersford (SOE 6) 17
Methods

Soil Profiles

![Soil Profiles Diagram]

Legend:
- Rekultivierungsschicht: Reclamation layer
- Oberboden: Topsoil
- Unterboden: Subsoil
- Entwässerungsschicht: Drainage layer
- Trisoplast-Dichtung: Trisoplast sealing
- Kunststoff-Dichtungsbahn: Plastic sealing strip

Measurement: cm

WO-W6: Durchwurzelungsintensität nach AG Boden, 1994

EUROPEAN UNION
location: Landfill Rotterdam Europoort
profile no.: EUR 1
relief/ exposition: middle slope
vegetation: gras, thistel, stinging nettle, clover
date: 24.09.01
use of the area: landfill cover
weather: cloudy, 15°C
editor: Steinert
page: 3

<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregation</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>lime content</th>
<th>* Fe²⁺</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>top soil</td>
<td>Ls2</td>
<td>10YR3/1</td>
<td>kru/sub</td>
<td>Ld3</td>
<td>w5</td>
<td>h3</td>
<td>++</td>
<td>-</td>
<td>at the top w6</td>
</tr>
<tr>
<td>30-55</td>
<td>sand</td>
<td>mSgs</td>
<td>10YR5/2</td>
<td>ein</td>
<td>Ld2</td>
<td>w4</td>
<td>h1</td>
<td>++</td>
<td>-</td>
<td>shells, on top of the geomembrane w6</td>
</tr>
<tr>
<td>55</td>
<td>geomembrane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,5 mm both sides sand rough</td>
</tr>
<tr>
<td>55-63</td>
<td>Trisoplast</td>
<td>-</td>
<td>10YR6/2</td>
<td>koh</td>
<td>Ld5</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>-</td>
<td>fine fissures at the surface</td>
</tr>
<tr>
<td>63</td>
<td>geotextile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

location: Landfill Rotterdam Europoort
profile no.: EUR 2
relief/ exposition: middle slope
vegetation: gras, thistle, stinging nettle, clover
use of the area: landfill cover
weather: cloudy, 15°C
date: 24.09.01
editor: Steinert
page: 4

<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregation</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>Lime content</th>
<th>* Fe²⁺</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>top soil drainage</td>
<td>Ls3</td>
<td>10YR3/2</td>
<td>sub</td>
<td>Ld4</td>
<td>w6</td>
<td>h3</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20-60</td>
<td></td>
<td>mSgs</td>
<td>10YR5/2</td>
<td>ein</td>
<td>Ld1</td>
<td>w4</td>
<td>h1</td>
<td>++</td>
<td>-</td>
<td>shells</td>
</tr>
<tr>
<td>60</td>
<td>geotextile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,5 mm both sides sand rough</td>
</tr>
<tr>
<td>60-73</td>
<td>Trisoplast geotextile</td>
<td>-</td>
<td>10YR5/2</td>
<td>koh</td>
<td>Ld4</td>
<td>w2</td>
<td>h0</td>
<td>++</td>
<td>-</td>
<td>at the surface w5</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregati on</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>lime content</th>
<th>* Fe²⁺</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>top soil</td>
<td>Ls2</td>
<td>10YR3/1</td>
<td>kru/sub</td>
<td>Ld3</td>
<td>w5</td>
<td>h3</td>
<td>++</td>
<td>-</td>
<td>at the top w6</td>
</tr>
<tr>
<td>30-55</td>
<td>sand</td>
<td>gsmS</td>
<td>10YR5/2</td>
<td>ein</td>
<td>Ld2</td>
<td>w4</td>
<td>h1</td>
<td>++</td>
<td>-</td>
<td>shells, on top of the geomembrane w6</td>
</tr>
<tr>
<td>55</td>
<td>geomembrane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,5 mm both sides sand rough</td>
</tr>
<tr>
<td>55-63</td>
<td>Trisoplast</td>
<td>-</td>
<td>10YR6/2</td>
<td>koh</td>
<td>Ld5</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>-</td>
<td>fine fissures at the surface</td>
</tr>
</tbody>
</table>

soil description according to AG Boden (1994), soil colour according to Munsel (1994), * colour test with α-α-Dipyridyl, n.p.: not provable
<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregatation</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>lime content</th>
<th>* Fe²⁺</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>top soil</td>
<td>Ls2</td>
<td>10YR3/1</td>
<td>kru/sub</td>
<td>Ld3</td>
<td>w5</td>
<td>h3</td>
<td>++</td>
<td>-</td>
<td>at the top w6</td>
</tr>
<tr>
<td>30-55</td>
<td>sand</td>
<td>gsmS</td>
<td>10YR5/2</td>
<td>ein</td>
<td>Ld2</td>
<td>w4</td>
<td>h1</td>
<td>++</td>
<td>-</td>
<td>shells, on top of the geomembrane w6</td>
</tr>
<tr>
<td>55</td>
<td>geomembrane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.5 mm both sides sand rough</td>
</tr>
<tr>
<td>55-63</td>
<td>Trisoplast</td>
<td>-</td>
<td>10YR6/2</td>
<td>koh</td>
<td>Ld5</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>-</td>
<td>fine fissures at the surface</td>
</tr>
</tbody>
</table>

soil description according to AG Boden (1994), soil colour according to Munsel (1994), * colour test with α-α-Dipyridyl, n.p.: not provable
<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>Munsell colour</th>
<th>aggregation</th>
<th>bulk density</th>
<th>roots</th>
<th>organic content</th>
<th>lime content</th>
<th>Fe2+</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>top soil</td>
<td>10YR3/1 kru</td>
<td>Ld1</td>
<td>w6</td>
<td>h4</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td>peat, pieces of wood, shells, rubbish, organic clay, Fe-coats</td>
</tr>
<tr>
<td>10-70</td>
<td>recultivation layer I</td>
<td>2,5YR3/2- sub-pol</td>
<td>Ld6</td>
<td>w4</td>
<td>h4</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td>reduction characteristics</td>
</tr>
<tr>
<td>70-110</td>
<td>recultivation layer II</td>
<td>10Y2,5/x pol</td>
<td>Ld5</td>
<td>w1</td>
<td>h6</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td>at the top rust coloured spots and areas</td>
</tr>
<tr>
<td>110</td>
<td>geotextile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110-140</td>
<td>drainage layer</td>
<td>7,5YR4/6 ein</td>
<td>Ld2</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td>no rust coloured spots</td>
</tr>
<tr>
<td>140-146</td>
<td>Trisoplast</td>
<td>2,5Y6/1 koh</td>
<td>Ld5</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td>no rust coloured spots</td>
</tr>
<tr>
<td>>146</td>
<td>subgrade</td>
<td>2,5Y5/1 ein</td>
<td>Ld3</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

soil description according to AG Boden (1994), soil colour according to Munsell (1994), * colour test with α-α-Dipyridyl, n.p.: not provable
location: Landfill Almere
profile no.: ALM 5
relief/ exposition: upper slope, SSW
vegetation: reed gras, thistels, docks, coltsfoot, mugwort
date: 25.09.01
use of the area: landfill cover
weather: cloudy, rainy
editor: Steinert
page: 7

<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregation</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>lime content</th>
<th>* Fe$^{2+}$</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>top soil</td>
<td>Sl2</td>
<td>10YR3/1</td>
<td>kru</td>
<td>Ld2</td>
<td>w6</td>
<td>h4</td>
<td>++</td>
<td>n.p.</td>
<td></td>
</tr>
<tr>
<td>20-90</td>
<td>recultivation layer</td>
<td>Sl2</td>
<td>10Y3/x-</td>
<td>sub-pol</td>
<td>Ld5-</td>
<td>w4</td>
<td>h5</td>
<td>++</td>
<td>n.p.</td>
<td>peat, pieces of wood, shells, rubbish, organic clay, reduction characteristics,</td>
</tr>
<tr>
<td>90</td>
<td>geotextile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>n.p.</td>
<td>at the top w3, rust coloured spots and areas</td>
</tr>
<tr>
<td>90-120</td>
<td>drainage layer</td>
<td>mSgs</td>
<td>10YR5/4</td>
<td>ein</td>
<td>Ld1</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td>first cm 10YR6/3, a few gravel particles</td>
</tr>
<tr>
<td>120-127</td>
<td>Trisoplast</td>
<td>-</td>
<td>10YR6/1</td>
<td>koh</td>
<td>Ld5</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td>rust coloured spots</td>
</tr>
<tr>
<td>>127</td>
<td>subgrade</td>
<td>mSgs</td>
<td>10YR6/3</td>
<td>ein</td>
<td>Ld2</td>
<td>w0</td>
<td>h0</td>
<td>++</td>
<td>n.p.</td>
<td></td>
</tr>
</tbody>
</table>

soil description according to AG Boden (1994), soil colour according to Munsel (1994), * colour test with α-α-Dipyridyl, n.p.: not provable
location: Landfill Soesterberg, Amersfoort
profile no.: SOE6
relief/ exposition: gentle slope, N

vegetation: thistles, docks, diff. trees
use of the area: landfill cover, forest plantation area
weather: first foggy, later clear
date: 26.09.01
editor: Steinert
page: 8

<table>
<thead>
<tr>
<th>depth in cm</th>
<th>material and horizon</th>
<th>textur</th>
<th>Munsell-colour</th>
<th>aggregaton</th>
<th>bulk density</th>
<th>roots</th>
<th>content organic material</th>
<th>lime content</th>
<th>* Fe²⁺</th>
<th>other description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-40</td>
<td>top soil</td>
<td>SI2</td>
<td>10YR4/1</td>
<td>kru-sub</td>
<td>Ld3</td>
<td>w6</td>
<td>h3</td>
<td>++</td>
<td>n.p.</td>
<td>at the bottom w5</td>
</tr>
<tr>
<td>40-95</td>
<td>recultivation layer I</td>
<td>Ls2</td>
<td>N2,5/x</td>
<td>sub-pol</td>
<td>Ld3-4</td>
<td>w1?</td>
<td>h5</td>
<td>++</td>
<td>n.p.</td>
<td>at the top Ld5, pieces of wood, rubble, contaminations?</td>
</tr>
<tr>
<td>95</td>
<td>geotextile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>gravel</td>
</tr>
<tr>
<td>95-120</td>
<td>recultivation layer II</td>
<td>mS</td>
<td>10YR3/1</td>
<td>ein</td>
<td>Ld3</td>
<td>w0?</td>
<td>h3</td>
<td>+</td>
<td>n.p.</td>
<td>only separate areas</td>
</tr>
<tr>
<td>120-121</td>
<td>geodrain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>121-125</td>
<td>sand load</td>
<td>gS</td>
<td>2,5Y5/1</td>
<td>ein</td>
<td>-</td>
<td>w0</td>
<td>h0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>geomembrane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>125-134</td>
<td>Trisoplast</td>
<td>-</td>
<td>2,5Y6/2</td>
<td>koh</td>
<td>Ld3</td>
<td>w0</td>
<td>h0</td>
<td>+</td>
<td>n.p.</td>
<td></td>
</tr>
<tr>
<td>>134</td>
<td>subgrade</td>
<td>SI2</td>
<td>10YR3/2</td>
<td>ein</td>
<td>Ld5</td>
<td>w0</td>
<td>h2</td>
<td>+</td>
<td>n.p.</td>
<td>stones, rubble</td>
</tr>
</tbody>
</table>

Soil description according to AG Boden (1994), soil colour according to Munsel (1994), * colour test with α-α-Dipyridyl, n.p.: not provable
appendix 2

Photo documentation

Contents

Profile 1, Landfill Rotterdam Europoort (EUR 1) 21
Profile 2, Landfill Rotterdam Europoort (EUR 2) 33
Profile 3, Protection pan, VOPAK petrol depot, Rotterdam (VOP 3) 43
Profile 4, Landfill Almere (ALM 4) 45
Profile 5, Landfill Almere (ALM 5) 49
Profile 6, Landfill Soesterberg, Amersford (SOE 6) 53
Profile 7, Landfill Soesterberg, Amersford (SOE 7) 65
Photo 1: *Methods of excavation*: Removing topsoil and vegetation (profile 1, Landfill Rotterdam Europoort)

Photo 2: *Methods of excavation*: Preparation of plant roots penetrating the drainage layer (profile 2, Landfill Rotterdam Europoort)
Photo 3:
Methods of excavation: Digging into the drainage layer carefully (profile 2, Landfill Rotterdam Europoort)

Photo 4:
Methods of excavation: Removing the drainage sand from the geomembrane (profile 1, Landfill Rotterdam Europoort)
Photo 5: *Methods of excavation:* Opening the geomembrane (profile 1, Landfill Rotterdam Europoort)

Photo 6: *Methods of excavation:* Photo and video documentation of the Trisoplast layer (profile 1, Landfill Rotterdam Europoort)
Photo 7: *Methods of excavation:* View to the surface of the Trisoplast layer, taking a undisturbed sample with a small steel cylinder (profile 1, Landfill Rotterdam Europoort)

Photo 8: *Methods of excavation:* Preparation of the Trisoplast layer taking a large undisturbed sample to measure water conductivity of Trisoplast in the laboratory (profile 2, Landfill Rotterdam Europoort)
Photo 9:
Methods of excavation: Detail of photo 8 (profile 1, Landfill Rotterdam Europoort)

Photo 10:
Methods of excavation: Trisoplas layer during the sampling (profile 1, Landfill Rotterdam Europoort)
Methods of excavation: Field investigation at the soil profile classifying texture, structure, colour and bulk density of the soil as well as intensity of root penetration, content of organic carbon and calcium carbonate (profile 1, Landfill Rotterdam Europoort)

Methods of excavation: The location after the sampling (profile 2, Landfill Rotterdam Europoort)
Photo 13: Profile 1, Landfill Rotterdam Europoort: Survey of the vegetation with predominantly thistles (Circium sp.), docks (Rumex sp.), stinging nettle (Urtica sp.), clover (Trifolium sp.), [Greiskraut] (Senecio sp.) and grasses

Photo 14: Profile 1, Landfill Rotterdam Europoort: Detail of photo 13
Photo 15: Profile 1, Landfill Rotterdam Europoort: Detail of photo 13

Photo 16: Profile 1, Landfill Rotterdam Europoort: View to the drainage layer after excavation of about 0.3 m topsoil
Profile 1, Landfill Rotterdam Europoort: Soil profile: 0.30 m topsoil and 0.25 m drainage layer above a geomembrane
Photo 18: *Profile 1, Landfill Rotterdam Europoort*: Plant roots prepared in the drainage layer on top of the geomembrane

Photo 19: *Profile 1, Landfill Rotterdam Europoort*: Surface of the Trisoplast layer after opening the geomembrane
Photo 20: Profile 1, Landfill Rotterdam Europoort: Detail of photo 19 showing some fissures and marks from Trisoplast compaction

Photo 21: Profile 1, Landfill Rotterdam Europoort: Details of the Trioplast surface, fissures and areas with white loose sand
Photo 22: *Profile 1, Landfill Rotterdam Europoort*: Vertical view to a fissure in the surface of the Trisoplast layer

Photo 23: *Profile 1, Landfill Rotterdam Europoort*: Diagonal view to a Trisoplast section with the same fissure as at photo 22
Photo 24: *Profile 1, Landfill Rotterdam Europoort:* Profile of the Trisoplast layer above a woven geotextile

Photo 25: *Profile 2, Landfill Rotterdam Europoort:* Survey of the vegetation with predominantly thistles (*Circium* sp.), docks (*Rumex* sp.), stinging nettle (*Urtica* sp.), clover (*Trifolium* sp.), [*Greiskraut*] (*Senecio* sp.) and grasses (see also photo 13), in the middle of the picture the entry to a foresaken rabbit burrow
Profile 2. Landfill Rotterdam Europoort: Soil profile: 0.3 m topsoil and 0.4 m drainage layer above a woven geotextile
Photo 27: *Profile 2, Landfill Rotterdam Europoort:* Rabbit burrow build in the drainage layer below the topsoil (compare photo 25)
Photo 28: *Profile 2, Landfill Rotterdam Europoort*: Plant roots on top of the geotextile below the drainage layer

Photo 29: *Profile 2, Landfill Rotterdam Europoort*: Plant roots penetrating into the overlapping zone of the geotextile
Photo 30: *Profile 2, Landfill Rotterdam Europoort:* Surface of the Trisoplast layer after opening the geotextile

Photo 31: *Profile 2, Landfill Rotterdam Europoort:* Plant roots at the bottom side of the wove geotextile
Photo 32: *Profile 2, Landfill Rotterdam Europoort:* Plant roots on top of the Trisoplast surface (vertical view)
Photo 33: Profile 2, Landfill Rotterdam Europoort: Plant roots on top of the Trisoplast surface (vertical view)

Photo 34: Profile 2, Landfill Rotterdam Europoort: Plant roots on top of the Trisoplast surface (diagonal view to the section square of the Trioplast layer, compare vertical view at photo 33)
Photo 35: Profile 2, Landfill Rotterdam Europoort: Opening the Trisoplast layer following the penetrated plant root
Photo 36: *Profile 2, Landfill Rotterdam Europoort:* A Trisoplast block cutted off lying on top of the Trisoplast layer

Photo 37: *Profile 2, Landfill Rotterdam Europoort:* View to a Section through the Trisoplast layer
Photo 38: *Profile 2, Landfill Rotterdam Europoort*: View to the bottom side of the Trisoplast block (compare photo 36)
Photo 39: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam: View to the location
Profile 3. Protection pan, VOPAK petrol depot, Rotterdam: Soil profile: 0.3 m rounded stones at the bottom mixed with sand underlying by a woven geotextile, 0.14 m Trisoplast layer and sandy subgrade
Photo 41: Profile 4, Landfill Almere: Excavation of the recultivation layer
Photo 42: *Profile 4, Landfill Almere:* Soil profile: 0,1 m topsoil, 0,6 m recultivation layer I, 0,4 m recultivation layer II, woven geotextile, 0,3 m drainage layer, 0,06 m Trisoplast layer.
Photo 43: *Profile 4, Landfill Almere:* Detail of the recultivation layer, red colours indicates cutans composed of iron oxides, hydroxides and other sesquioxides covering the surfaces of soil aggregates.

Photo 44: *Profile 4, Landfill Almere:* View to the top of the drainage layer surface, rust colours indicates movement of iron.
Photo 45: *Profile 4, Landfill Almere:* Section through the drainage layer, on top the woven geotextile, at the bottom the surface of the Trioplast layer.

Photo 46: *Profile 4, Landfill Almere:* Section through the Trisoplast layer, at the bottom a geotextile.
Photo 47: *Profile 4, Landfill Almere*: Detail of photo 46

Photo 48: *Profile 5, Landfill Almere*: Survey of the vegetation with predominantly reed gras (Phalaris sp.), thistles (Circium sp.) and docks (Rumex sp.)
Photo 49:
Profile 5, Landfill Almere: Soil profile, 0.2 m topsoil, 0.7 m recultivation layer, woven geotextile, 0.3 m drainage layer, Trisoplast layer
Profile 5, Landfill Almere: Plant roots on top of and penetrating woven geotextile between the recultivation and the drainage layer

Profile 5, Landfill Almere: Plant roots on top of and between the overlapping zone of the geotextil (in the middle of the picture), the overlying geotextile in the lower half of the picture had been removed
Photo 52: *Profile 5, Landfill Almere:* Vertical view to the surface of the Trioplast layer after careful scraping the overlying drainage sand

Photo 53: *Profile 5, Landfill Almere:* Vertical view to the surface of the Trioplast layer with a Trisoplast block cutted off appearing the underlying woven geotextile
Photo 54: *Profile 5, Landfill Almere:* Section through the Trisoplast layer and the geotextile below. The lower part of the picture shows the surface of the foundation layer with rust coloured spots.

Photo 55: *Profile 6, Landfill Seosterberg, Amersford:* Survey of the vegetation in a forest plantation area with a lot of different bushes, trees and perennial herbs
Photo 56: *Profile 6, Landfill Seosterberg, Amersfoord:* Various trees like black alder (Alnus glutinosa), willow (Salix sp.), birch (Betula sp.), hazel (Corylus avellana) and spruce (Picea sp.) standing round the open profile
Profile 6, Landfill Seosterberg, Amersfoord: Prepared root zone of the black alder
Photo 58: Profile 6, Landfill Seosterberg, Amersford: Detail of photo 57
Photo 59: *Profile 6, Landfill Seisterberg, Amersfoord*: Soil profile: 0.4 m topsoil, 0.55 m [Unterboden], woven geotextile, 0.25 m buried topsoil, geosynthetic drainage layer, geomembrane, 0.09 m Trisoplast layer, foundation layer
Photo 60: *Profile 6, Landfill Seosterberg, Amersford:* View to the top of the geotextile between [Unterboden] and the buried topsoil

Photo 61: *Profile 6, Landfill Seosterberg, Amersford:* Surface of the buried topsoil with dead vegetation after opening the geotextile
Photo 62: *Profile 6, Landfill Seosterberg, Amersford:* Detail of photo 61

Photo 63: *Profile 6, Landfill Seosterberg, Amersford:* Diagonal view to a vertical cut into the buried topsoil
Photo 64: Profile 6, Landfill Seosterberg, Amersford: Section through the buried topsoil below the geotextile and above a geosynthetic drainage layer

Photo 65: Profile 6, Landfill Seosterberg, Amersford: Vertical view to the geomembrane before opening
Photo 66: Profile 6, Landfill Seosterberg, Amersford: View to the surface of the Trisoplast layer after opening the geomembrane

Photo 67: Profile 6, Landfill Seosterberg, Amersford: Trace of a roller at the surface of the Trisoplast layer
Photo 68: *Profile 6, Landfill Seosterberg, Amersford:* Trisoplast block cut off lying at the surface of the Trisoplast layer

Photo 69: *Profile 6, Landfill Seosterberg, Amersford:* Detail of photo 68
Photo 70: *Profile 6, Landfill Seosterberg, Amersford: Section through the buried topsoil and the Trisoplast layer with a geosynthetic drainage layer and geomembrane between them (see also photo 59)*

Photo 71: *Profile 6, Landfill Seosterberg, Amersford: Section through the Trisoplast layer (see also photos 59 and 70)*
Photo 72: Profile 6, Landfill Seosterberg, Amersfoord: Detail of photo 71
Photo 73: *Profile 7, Landfill Seosterberg, Amersford:* General view to the location chosen to prepare the roots of a black alder (*Alnus glutinosa*) and a dock (*Rumex sp.*).
Photo 74: *Profile 7, Landfill Seosterberg, Amersfoord:* The root zone of the black alder ending in a depth of one meter at a border through a compacted clay below
Photo 75: Profile 7, Landfill Seosterberg, Amersford: Detail of photo 74, roots ending like “chicken feet”
Photo 76: Profile 7, Landfill Seosterberg, Amersfoord: Overall view to the dock plant with prepared roots
Profile 7, Landfill Seosterberg, Amersford: Detail of photo 76, prepared roots ending in a depth of one meter below the soil surface
appendix 3

Micromorphological survey of Trisoplast- and Drainage-Layers by Thin Sections

Contents

Methods 72

Profile 1, Landfill Rotterdam Europoort (EUR 1) 73
Profile 2, Landfill Rotterdam Europoort (EUR 2) 74
Profile 3, Protection pan, VOPAK petrol depot, Rotterdam (VOP 3) 75
Profile 4, Landfill Almere (ALM 4) 76
Profile 5, Landfill Almere (ALM 5) 78
Profile 6, Landfill Soesterberg, Amersfoord (SOE 6) 79
Methods

- Taking undisturbed sample rings from the Trisoplast layer respectively the drainage layer
- Vacuum impregnation of the hole sample rings with liquid polyester over 3 month
- Preparation of thin sections through the middle of the samples
- Fixing the thin section on glass slides (48 mm x 60 mm)
- Examination of the thin sections under a microscope with photo tube
Figure 1: Profile 1, Landfill Rotterdam Europoort, Trisoplast layer, magnification: 50×

Figure 2: Detail of Fig. 1, magnification: 143×
Figure 3: Profile 2, Landfill Rotterdam Europoort, Trisoplast layer, magnification: 50×

Figure 4: Detail of Fig. 3, magnification: 143×
Figure 5: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam, Trisoplast layer, magnification: 50×

Figure 6: Detail of Fig. 5, magnification: 143×
Figure 7: Profile 4, Landfill Almere, drainage layer, magnification: 50×

Figure 8: Profile 4, Landfill Almere, drainage layer, magnification: 143×
Figure 9: Profile 4, Landfill Almere, Trisoplast layer, magnification: 50×

Figure 10: Profile 4, Landfill Almere, Trisoplast layer, magnification: 143×
Figure 11: Profile 5, Landfill Almere, Trisoplast layer, magnification: 50×

Figure 12: Detail of Fig. 11, magnification: 143×
Figure 13: Profile 6, Landfill Soesterberg, Amersfoord, Trisoplast layer, magnification: 50×

Figure 14: Detail of Fig. 13, magnification: 143×
Surface Structures of Trisoplast taken by Scanning Electron Microscope (SEM)

Contents

Methods 82
Profile 1, Landfill Rotterdam Europoort (EUR 1) 83
Profile 2, Landfill Rotterdam Europoort (EUR 2) 85
Profile 3, Protection pan, VOPAK petrol depot, Rotterdam (VOP 3) 87
Profile 4, Landfill Almere (ALM 4) 89
Profile 5, Landfill Almere (ALM 5) 91
Profile 6, Landfill Soesterberg, Amersford (SOE 6) 92
Methods

Method A (SEM scanning of freeze-dried Trisopast)
- Preparation of approx. 1 g moist Trisopast sample from the sample rings
- 3 min. shock freezing in liquid nitrogen
- 72 h freeze-drying in high vacuum freeze drying equipment (Christ Alpha1-2)
- Fixing the samples on SEM stubs
- 3 min. coating surface with gold in Plasma-Magnetron-Sputter (Edwards Sputter Coater S 150B)
- Scanning with SEM (LEO 1455 VP) in high vacuum

Method B (SEM scanning of moist Trisoplast)
- Preparation of pea sized moist Trisoplast samples from the sample rings
- Fixing the moist samples on SEM stubs
- Scanning with SEM (LEO 1455 VP) in low vacuum

Advantages of method A and disadvantages of method B: High magnifications and focus in the high vacuum modus possible

Disadvantages of method A and advantage of method B: Changing the surface of the clay component of Trisoplast by shock freezing and freeze-drying

Recommendation: Systematic improvement of sample preparation of method A
Figure 1: Profile 1, Landfill Rotterdam Europoort, freeze-dried Trisoplast sample

Figure 2: Profile 1, Landfill Rotterdam Europoort, detail of Fig. 1
Figure 3: Profile 1, Landfill Rotterdam Europoort, moist Trisoplast sample

Figure 4: Profile 1, Landfill Rotterdam Europoort, detail of Fig. 3
Figure 5: Profile 2, Landfill Rotterdam Europoort, freeze-dried Trisoplast sample

Figure 6: Profile 2, Landfill Rotterdam Europoort, detail of Fig. 5
Figure 7: Profile 2, Landfill Rotterdam Europoort, moist Trisoplast sample

Figure 8: Profile 2, Landfill Rotterdam Europoort, detail of Fig. 7
Figure 9: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam, freeze-dried Trisoplast sample

Figure 10: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam, detail of Fig. 9
Figure 11: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam, moist Trisoplast sample

Figure 12: Profile 3, Protection pan, VOPAK petrol depot, Rotterdam, detail of Fig. 11
Figure 13: Profile 4, Landfill Almere, freeze-dried Trisoplast sample

Figure 14: Profile 4, Landfill Almere, detail of Fig. 13
Figure 15: Profile 4, Landfill Almere, moist Trisoplast sample

Figure 16: Profile 4, Landfill Almere, detail of Fig. 15
Figure 17: Profile 5, Landfill Almere, freeze-dried Trisoplast sample

Figure 18: Profile 5, Landfill Almere, detail of Fig. 17
Figure 19: Profile 6, Landfill Soesterberg, Amersford, freeze-dried Trisoplast sample

Figure 20: Profile 6, Landfill Soesterberg, Amersford, detail of Fig. 19
Figure 21: Profile 6, Landfill Soesterberg, Amersford, moist Trisoplast sample

Figure 22: Profile 6, Landfill Soesterberg, Amersford, detail of Fig. 21
Soil Water Retention of Trisoplast and the Adjoining Layers

Contents

Methods 96

Profile 1, Landfill Rotterdam Europoort (EUR 1) 97
Profile 2, Landfill Rotterdam Europoort (EUR 2) 99
Profile 3, Protection pan, VOPAK petrol depot, Rotterdam (VOP 3) 101
Profile 4, Landfill Almere (ALM 4) 102
Profile 5, Landfill Almere (ALM 5) 105
Profile 6, Landfill Soesterberg, Amersford (SOE 6) 106
Methods

- Taking five undisturbed samples from each Trisoplast barrier respectively adjoining layer (sample cylinders: 4 cm high and 5 cm diameter)

- Wetting of the samples with capillary water on a wet sand layer over a period of about 6 weeks (water-level 0.5 cm below the samples resulting in a mean pressure head of 3 hPa within the samples)

- Dewatering of the samples in a pressure cell apparatus (Soilmoisture Equipment Corp., Santa Barbara, USA) in steps of 20 hPa, 60 hPa, 100 hPa, 300 hPa, 1,000 hPa, 3,000 hPa and 15,000 hPa over periods of about one day to two weeks each.

Details about the methods in:

Drainage Layer (Landfill Rotterdam Europoort, profile 1)

Individual samples
- Z207
- Z208
- Z218
- Z219
- Z226

Average and range

Matric suction head in hPa

Volumetric water content in %
Trisoplast Layer (Landfill Rotterdam Europoort, profile 1)

Individual samples
- Z203
- Z205
- Z206
- Z209
- Z211

Average and range

Matric suction head in hPa

Volumetric water content in %
Topsoil (Landfill Rotterdam Europoort, profile 2)

Individual samples:
- Z232
- Z236
- Z237
- Z238
- Z244

Average and range:

Volumetric water content in %

Matric suction head in hPa

page 5
Trisoplast Layer (Landfill Rotterdam Europoort, profile 2)

- **Individual samples**
 - Z207
 - Z210
 - Z216
 - Z225
 - Z228

- **Average and range**

<table>
<thead>
<tr>
<th>Matric suction head in hPa</th>
<th>Volumetric water content in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td>10000</td>
<td>10</td>
</tr>
</tbody>
</table>

Average and range values are shown with error bars.
Soil Water Retention

Trisoplast Layer
(Protection pan, VOPAK petrol depot, Rotterdam, profile 3)

Individual samples
- Z201
- Z204
- Z214
- Z223
- Z242

Average and range

Matric suction head in hPa

Volumetric water content in %
Drainage Layer (Landfill Almere, profile 4)

Individual samples
- Z230
- Z239
- Z245
- Z258
- Z295

Average and range
Soil Water Retention

Trisoplast Layer (Landfill Almere, profile 4)

Individual samples
- Z241
- Z246
- Z248
- Z282
- Z290

Average and range

Matric suction head in hPa

Volumetric water content in %
Subgrade (Landfill Almere, profile 4)

Individual samples
- Z279
- Z281
- Z283
- Z298
- Z300

Matric suction head in hPa

Volumetric water content in %

Average and range

Matric suction head in hPa

Volumetric water content in %
Soil Water Retention

Trisoplast Layer (Landfill Almere, profile 5)

Individual samples
- Z229
- Z252
- Z257
- Z258
- Z267

 Average and range

Volumetric water content in %

Matric suction head in hPa

Page 11

Alterra-report 541-appendices 105
Trisoplast Layer (Landfill Soesterberg, Amersford, profile 6)

Individual samples:
- Z403
- Z404
- Z405
- Z407
- Z413

Average and range

Matric suction head in hPa
Subgrade (Landfill Soesterberg, Amersford, profile 6)

Individual samples
- Z215
- Z287
- Z291
- Z296
- Z406

Average and range

Volumetric water content in %

Matric suction head in hPa

Volumetric water content in %

Matric suction head in hPa
Protocol for the measurement of saturated hydraulic conductivity of undisturbed samples (Alterra, Wageningen, The Netherlands) and observed permeability

Background
The saturated hydraulic conductivity, permeability, \(K_{\text{sat}} \) is defined as the constant in Darcy’s law for fluid transport in porous media:

\[
\text{Flux} = \text{permeability (K}_{\text{sat}} \text{x hydraulic gradient (m}^3\text{m}^{-2}\text{s}^{-1})
\]

The gradient is defined as the difference in hydraulic head (m water column) at the top and base of the sample, divided by the thickness of the sample or the difference of hydraulic head measured at two different levels, divided by the distance between both levels.

The permeability can be determined by measuring the flux at a constant gradient (“constant head” method) or a gradually decreasing head (“falling head”). From the observations the permeability is calculated:

1. Constant head:

\[
K_{\text{sat}} = \frac{\text{flux (m/s)}}{\{(h + d) / d\}}
\]

2. Falling head:

\[
K_{\text{sat}} = \frac{\{a \times d\}}{\{A \times T\} \times \ln \left[\frac{(h_0 + d)}{(h_t + d)}\right]}
\]

Where:
- \(a \) cross section of burette (m\(^2\))
- \(A \) cross section of sample (m\(^2\))
- \(d \) thickness of sample (m)
- \(h_0 \) height water level in burette relative to top of sample at time zero (0) and \(T \) (t) respectively (m)
- \(T \) elapsed time between two observations of the water level (s)

Materials
Required materials:
(1) *measurement set up*
1. sample with filter material;
2. burette for measuring water level
3. valve to switch from supply from Mariotte bottle (constant head) to supply from burette (falling head);
4. Mariotte bottle. The venting tube assures a constant water pressure, irrespective of the water level inside of the bottle;
5. Zero-level (reference);
6. Water level at constant head measurement
7. Vessel for collecting outflow
8. Electronic balance for weighing outflow

![Diagram of experimental set up for the permeability measurement](image)

Fig. 1.6 Experimental set up for the permeability measurement

(2) *Laboratory journal*
In this journal the following information has been written:
1. Sample code;
2. Sample date
3. Sample description (location of sampling, project number)
4. Name responsible person
5. Starting date of measurements
6. Readings + remarks
7. End date of measuring
8. List of all measurements + signature quality manager when approved
(3) Equipment for sampling of undisturbed sample

1. Spade
2. Sample ring, cutting ring, cover plates and clamps
3. Emballage material (plastic)
4. Gas heater for field applications
5. Pot + paraffin + spoon
6. Coarse sand / filter material

Sampling

Remove any soil and other materials at the sampling place down to the layer, which will be sampled. A working space of about one square meter is required. Smoothen the surface.

In the mean time put sufficient paraffin in the pot and heat it carefully (do not overheat!!)

Push the cutting ring as far as possible in the layer and remove sufficient material outside of the cutting ring. The idea is to cut a soil column. When the height of the column is sufficient, place the sample ring. A space of at least 1-cm should be left above the top of the soil column for the filter material. Centre the sample ring as to create a uniform space between soil column and sample ring. Fill the space with liquid paraffin. Avoid the inclusion of air!! Wait until the paraffin has regained its solid state. Remove sufficient soil as to cut out the sample.

When the sample is taken, fill the space on top of the sample with filter material and close the sample. Place the sample up side down and remove all excess granular material. Remove sufficient material to create a space of at least one-cm for filter material. Fill this space with filter material and close the sample. Transport the sample enwrapped in shock absorbing material.

Fig. 2.6 Cutting a soil column from a soil layers using the cutting ring
Permeability measurement

After installation of the sample in the set up (ambient temperature 20 centi-degrees) the test fluid is applied to the bottom of the sample (to avoid air entrapment). A constant head (1 m water column) is applied first, followed by measurements according to the falling head method. The date and time and level in the burette are recorded. Readings are done. Depending on the infiltration rate, after 24 hours the measurements are switched to the constant head method. When an outflow rate can be measured, only the constant head is applied. The permeability, K_{sat} ($=\text{flux/gradient}$) is calculated and plotted. The measurements are to be continued until a zero-trend of the permeability is be observed. The trend is calculated from the last five calculated permeabilities through regression analysis and should be $0.0 \pm 0.01 \times 10^{-10} \text{ m.s}^{-1} \text{ day}^{-1}$.

Fig. 3.6 Placing the sample ring and filling the empty space between soil column and sample ring with paraffin
Results

The results of the permeability calculations, based on the falling head approach, are listed in table 6.1a through d.

Table 6.1a Observed permeability of samples from the VBM-Maasvlakte (EUR1) site

<table>
<thead>
<tr>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.6796</td>
<td>19.2</td>
<td>0.4364</td>
<td>41.0</td>
<td>0.2266</td>
</tr>
<tr>
<td>4.2</td>
<td>0.8836</td>
<td>19.3</td>
<td>0.4852</td>
<td>42.0</td>
<td>0.2448</td>
</tr>
<tr>
<td>4.3</td>
<td>0.7889</td>
<td>25.3</td>
<td>0.5068</td>
<td>46.3</td>
<td>0.0564</td>
</tr>
<tr>
<td>5.2</td>
<td>0.7069</td>
<td>26.3</td>
<td>0.4927</td>
<td>47.0</td>
<td>0.0199</td>
</tr>
<tr>
<td>5.3</td>
<td>0.6163</td>
<td>27.3</td>
<td>0.4565</td>
<td>47.3</td>
<td>0.3526</td>
</tr>
<tr>
<td>7.0</td>
<td>0.0003</td>
<td>28.3</td>
<td>0.3058</td>
<td>48.0</td>
<td>0.3633</td>
</tr>
<tr>
<td>7.2</td>
<td>1.0752</td>
<td>32.3</td>
<td>0.2081</td>
<td>49.0</td>
<td>0.4931</td>
</tr>
<tr>
<td>7.3</td>
<td>0.8207</td>
<td>33.3</td>
<td>0.2372</td>
<td>53.3</td>
<td>0.1218</td>
</tr>
<tr>
<td>11.2</td>
<td>0.6897</td>
<td>34.0</td>
<td>0.1769</td>
<td>54.2</td>
<td>0.1643</td>
</tr>
<tr>
<td>11.3</td>
<td>0.4710</td>
<td>34.3</td>
<td>0.0693</td>
<td>54.3</td>
<td>0.1009</td>
</tr>
<tr>
<td>13.2</td>
<td>0.8808</td>
<td>34.9</td>
<td>0.3280</td>
<td>55.0</td>
<td>0.1172</td>
</tr>
<tr>
<td>13.3</td>
<td>0.7533</td>
<td>39.3</td>
<td>0.0993</td>
<td>59.3</td>
<td>0.1700</td>
</tr>
<tr>
<td>18.2</td>
<td>0.3537</td>
<td>40.0</td>
<td>0.2443</td>
<td>60.3</td>
<td>0.2134</td>
</tr>
<tr>
<td>18.3</td>
<td>0.2135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1b Observed permeability of samples from the VOPAK (VOP3)

<table>
<thead>
<tr>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>0.1004</td>
</tr>
<tr>
<td>12.7</td>
<td>0.0874</td>
</tr>
<tr>
<td>14.8</td>
<td>0.4425</td>
</tr>
<tr>
<td>18.7</td>
<td>0.0227</td>
</tr>
<tr>
<td>21.8</td>
<td>0.2614</td>
</tr>
<tr>
<td>26.8</td>
<td>0.0165</td>
</tr>
</tbody>
</table>
Table 6.1c Observed permeability of samples from the Almere (ALM4) site

<table>
<thead>
<tr>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.5916</td>
<td>13.3</td>
<td>0.6029</td>
<td>34.0</td>
<td>0.0104</td>
</tr>
<tr>
<td>4.2</td>
<td>0.8194</td>
<td>19.2</td>
<td>0.3033</td>
<td>34.9</td>
<td>0.2964</td>
</tr>
<tr>
<td>4.3</td>
<td>0.8887</td>
<td>19.3</td>
<td>0.3543</td>
<td>40.0</td>
<td>0.0696</td>
</tr>
<tr>
<td>5.2</td>
<td>0.6555</td>
<td>25.3</td>
<td>0.1993</td>
<td>41.0</td>
<td>0.2239</td>
</tr>
<tr>
<td>5.3</td>
<td>0.5824</td>
<td>26.3</td>
<td>0.2999</td>
<td>42.3</td>
<td>0.3487</td>
</tr>
<tr>
<td>7.2</td>
<td>0.7283</td>
<td>27.3</td>
<td>0.3956</td>
<td>53.0</td>
<td>0.0412</td>
</tr>
<tr>
<td>7.3</td>
<td>0.8356</td>
<td>28.3</td>
<td>0.4361</td>
<td>55.0</td>
<td>0.2422</td>
</tr>
<tr>
<td>11.2</td>
<td>0.8283</td>
<td>32.3</td>
<td>0.0371</td>
<td>59.3</td>
<td>0.0296</td>
</tr>
<tr>
<td>13.2</td>
<td>1.0049</td>
<td>33.3</td>
<td>0.0840</td>
<td>61.0</td>
<td>0.0395</td>
</tr>
</tbody>
</table>

Table 6.1d Observed permeability of samples from the Soesterberg (SOE6) site

<table>
<thead>
<tr>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
<th>Elapsed time (day)</th>
<th>K-sat 1×10^{-10} m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.5854</td>
<td>19.2</td>
<td>0.2708</td>
<td>41.0</td>
<td>0.3369</td>
</tr>
<tr>
<td>4.2</td>
<td>1.1331</td>
<td>19.3</td>
<td>0.3528</td>
<td>42.0</td>
<td>0.2772</td>
</tr>
<tr>
<td>4.3</td>
<td>0.6684</td>
<td>25.3</td>
<td>0.1287</td>
<td>46.3</td>
<td>0.0224</td>
</tr>
<tr>
<td>5.2</td>
<td>0.9065</td>
<td>26.3</td>
<td>0.1134</td>
<td>47.3</td>
<td>0.3390</td>
</tr>
<tr>
<td>5.3</td>
<td>0.2944</td>
<td>27.3</td>
<td>0.2861</td>
<td>48.0</td>
<td>0.4411</td>
</tr>
<tr>
<td>7.2</td>
<td>0.9552</td>
<td>28.3</td>
<td>0.1695</td>
<td>49.0</td>
<td>0.5426</td>
</tr>
<tr>
<td>7.3</td>
<td>0.4662</td>
<td>32.3</td>
<td>0.0558</td>
<td>53.3</td>
<td>0.0652</td>
</tr>
<tr>
<td>11.2</td>
<td>0.6869</td>
<td>33.3</td>
<td>0.1504</td>
<td>54.2</td>
<td>0.1287</td>
</tr>
<tr>
<td>11.3</td>
<td>0.2206</td>
<td>34.0</td>
<td>0.0210</td>
<td>54.3</td>
<td>0.0733</td>
</tr>
<tr>
<td>13.2</td>
<td>1.0049</td>
<td>34.9</td>
<td>0.2800</td>
<td>55.0</td>
<td>0.1896</td>
</tr>
<tr>
<td>13.3</td>
<td>0.4957</td>
<td>39.3</td>
<td>0.0197</td>
<td>59.3</td>
<td>0.1194</td>
</tr>
<tr>
<td>19.0</td>
<td>0.0648</td>
<td>40.0</td>
<td>0.2346</td>
<td>60.3</td>
<td>0.1770</td>
</tr>
</tbody>
</table>

At time 0 day, water is applied to the bottom of the sample. The sample itself is unsaturated, so likely relatively high gradients exist. The calculation procedure is based on the assumption of complete saturation and an outflow at a fixed level, which underestimates the actual gradient and overestimates the permeability. When, however saturation proceeds, the gradients become more or less equal to the assumed one and the calculated permeability reflects the real saturated permeability. The VOPAK sample was almost fully saturated at the beginning of the measurements, so initially the gradients are not elevated.
Chemical Analysis of Topsoil and Drainage Layer

Contents

Methods 116
Samples 116
Results profiles 2 and 4 117
Methods

- Taking disturbed samples
- Measuring pH-Value in water and CaCl₂-solution
- Measuring the ion concentration of Fe, Al and Mn after oxalat-and dithionit-extraction according to Schlichting, Blume & Stahr (1995): Bodenkundliches Praktikum.
- Measuring the total content of Fe, Al and Mn according to S7 DIN ISO 11466.

Samples

<table>
<thead>
<tr>
<th>profile</th>
<th>layer</th>
<th>sample no.</th>
<th>lab no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 2</td>
<td>topsoil</td>
<td>2/27</td>
<td>11402</td>
</tr>
<tr>
<td>EUR 2</td>
<td>drainage layer</td>
<td>2/28</td>
<td>11403</td>
</tr>
<tr>
<td>ALM 4</td>
<td>drainage layer without rusty coloured areas</td>
<td>4/7</td>
<td>11404</td>
</tr>
<tr>
<td>ALM 4</td>
<td>rusty coloured areas of the drainage layer</td>
<td>4/9</td>
<td>11405</td>
</tr>
</tbody>
</table>
Melchior + Wittpohl
Ingenieurgesellschaft
Karlottenstraße 6
D 20357 Hamburg

18.12.2001
Auftrag 7688
Probeneingang 12.12.2001

<table>
<thead>
<tr>
<th>LaborNr:</th>
<th>11402</th>
<th>11403</th>
<th>11404</th>
<th>11405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenbezeichnung</td>
<td>2/27</td>
<td>2/28</td>
<td>4/7</td>
<td>4/9</td>
</tr>
<tr>
<td>pH-Wert CaCl2</td>
<td>7.29</td>
<td>6.91</td>
<td>7.16</td>
<td>7.53</td>
</tr>
<tr>
<td>pH-Wert H2O</td>
<td>7.53</td>
<td>8.92</td>
<td>8.32</td>
<td>7.69</td>
</tr>
</tbody>
</table>

Extrakt
Oxalat Fe	3523	517	518	2555 mg/kg
Dithionit Fe	4644	800	548	2801 mg/kg
Oxalat Mn	207	29	17	19 mg/kg
Dithionit Mn	265	65	32	33 mg/kg
Oxalat Al	252	41	36	32 mg/kg
Dithionit Al	383	63	86	81 mg/kg

Königswasser
aufschluß S7 DIN ISO 11466
Fe	16155	4248	2376	5318 mg/kg
Mn	333	95	58	55 mg/kg
Al	10286	2145	1703	1490 mg/kg

Angaben bezogen auf TS
Oxalatextrakt nach Schlichting Blume Stahr 1995
Dithionitextrakt nach Schlichting Blume Stahr 1995
Messung: ICP-OES DIN EN ISO 11885 (E22)
Chemical composition of pore water

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample location</th>
<th>Layer code</th>
<th>pH</th>
<th>Tot. conc. (meq/l)</th>
<th>SAR</th>
<th>Cationen (mg/l)</th>
<th>Anions (meq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ca</td>
<td>K</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>1 n.a.</td>
<td>297.3</td>
<td>2.23</td>
<td>2.01</td>
<td>0.96</td>
<td>6.14</td>
<td>141.63</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>2 n.a.</td>
<td>278.3</td>
<td>2.18</td>
<td>1.66</td>
<td>0.88</td>
<td>5.43</td>
<td>130.06</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>3 n.a.</td>
<td>254.7</td>
<td>2.18</td>
<td>1.65</td>
<td>0.81</td>
<td>4.54</td>
<td>120.35</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>4 n.a.</td>
<td>242.3</td>
<td>2.18</td>
<td>1.57</td>
<td>0.80</td>
<td>4.33</td>
<td>117.43</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>5 n.a.</td>
<td>260.6</td>
<td>2.05</td>
<td>2.53</td>
<td>0.95</td>
<td>6.33</td>
<td>135.60</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>drainage layer</td>
<td>7.7</td>
<td>3.9</td>
<td>1.62</td>
<td>0.64</td>
<td>0.18</td>
<td>0.63</td>
</tr>
<tr>
<td>Maasvlakte EUR1</td>
<td>supporting layer</td>
<td>9.1</td>
<td>75.4</td>
<td>0.13</td>
<td>0.50</td>
<td>3.91</td>
<td>30.00</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>1 n.a.</td>
<td>99.1</td>
<td>1.74</td>
<td>0.54</td>
<td>0.46</td>
<td>0.98</td>
<td>47.54</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>2 n.a.</td>
<td>70.3</td>
<td>1.63</td>
<td>0.40</td>
<td>0.39</td>
<td>0.55</td>
<td>35.38</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>3 n.a.</td>
<td>65.9</td>
<td>1.45</td>
<td>0.50</td>
<td>0.41</td>
<td>0.51</td>
<td>32.72</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>4 n.a.</td>
<td>46.3</td>
<td>1.26</td>
<td>0.38</td>
<td>0.34</td>
<td>0.30</td>
<td>22.81</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>drainage layer</td>
<td>7.9</td>
<td>5.4</td>
<td>1.14</td>
<td>0.66</td>
<td>0.21</td>
<td>1.98</td>
</tr>
<tr>
<td>Maasvlakte EUR2</td>
<td>supporting layer</td>
<td>8.8</td>
<td>41.9</td>
<td>0.07</td>
<td>0.74</td>
<td>1.03</td>
<td>16.90</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>1 n.a.</td>
<td>32.0</td>
<td>1.41</td>
<td>0.19</td>
<td>0.14</td>
<td>0.18</td>
<td>19.27</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>2 n.a.</td>
<td>34.4</td>
<td>1.36</td>
<td>0.23</td>
<td>0.15</td>
<td>0.23</td>
<td>20.44</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>3 n.a.</td>
<td>28.6</td>
<td>1.30</td>
<td>0.19</td>
<td>0.13</td>
<td>0.17</td>
<td>17.28</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>4 n.a.</td>
<td>31.2</td>
<td>1.29</td>
<td>0.21</td>
<td>0.12</td>
<td>0.17</td>
<td>15.22</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>5 n.a.</td>
<td>24.0</td>
<td>1.12</td>
<td>0.21</td>
<td>0.12</td>
<td>0.17</td>
<td>15.22</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>drainage layer</td>
<td>8.2</td>
<td>9.7</td>
<td>1.22</td>
<td>0.12</td>
<td>0.29</td>
<td>4.63</td>
</tr>
<tr>
<td>VOPAK VOP3</td>
<td>Subgrade</td>
<td>8.8</td>
<td>23.3</td>
<td>0.34</td>
<td>0.68</td>
<td>0.17</td>
<td>1.46</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>1 7.8</td>
<td>66.0</td>
<td>0.17</td>
<td>11.93</td>
<td>0.79</td>
<td>8.16</td>
<td>16.46</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>2 7.9</td>
<td>59.2</td>
<td>0.16</td>
<td>11.04</td>
<td>0.69</td>
<td>6.96</td>
<td>14.65</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>3 7.8</td>
<td>62.3</td>
<td>0.16</td>
<td>12.35</td>
<td>0.71</td>
<td>7.35</td>
<td>14.73</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>4 7.8</td>
<td>58.9</td>
<td>0.15</td>
<td>12.64</td>
<td>0.69</td>
<td>6.48</td>
<td>13.95</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>5 7.8</td>
<td>64.0</td>
<td>0.16</td>
<td>14.32</td>
<td>0.73</td>
<td>6.27</td>
<td>15.00</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>Drain. lower half</td>
<td>7.7</td>
<td>46.8</td>
<td>0.13</td>
<td>11.64</td>
<td>0.48</td>
<td>2.72</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>Drain. upper half</td>
<td>7.7</td>
<td>45.6</td>
<td>0.03</td>
<td>18.13</td>
<td>0.43</td>
<td>2.93</td>
</tr>
<tr>
<td>Almere ALM4</td>
<td>Subgrade</td>
<td>7.8</td>
<td>34.9</td>
<td>0.15</td>
<td>3.75</td>
<td>0.39</td>
<td>1.78</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>1 7.8</td>
<td>62.8</td>
<td>0.11</td>
<td>13.87</td>
<td>0.77</td>
<td>8.05</td>
<td>10.56</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>2 7.6</td>
<td>64.3</td>
<td>0.11</td>
<td>14.43</td>
<td>0.72</td>
<td>7.80</td>
<td>10.94</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>3 7.7</td>
<td>59.3</td>
<td>0.11</td>
<td>13.83</td>
<td>0.66</td>
<td>6.82</td>
<td>10.60</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>4 7.7</td>
<td>61.6</td>
<td>0.10</td>
<td>15.49</td>
<td>0.66</td>
<td>6.66</td>
<td>9.48</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>5 7.7</td>
<td>53.3</td>
<td>0.08</td>
<td>14.49</td>
<td>0.60</td>
<td>5.50</td>
<td>7.88</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>Drain. lower half</td>
<td>7.7</td>
<td>34.8</td>
<td>0.05</td>
<td>11.50</td>
<td>0.37</td>
<td>2.72</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>Drain. upper half</td>
<td>7.6</td>
<td>37.0</td>
<td>0.01</td>
<td>16.84</td>
<td>0.30</td>
<td>1.82</td>
</tr>
<tr>
<td>Almere ALM5</td>
<td>Subgrade</td>
<td>7.6</td>
<td>57.9</td>
<td>0.12</td>
<td>15.82</td>
<td>0.45</td>
<td>3.24</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>1 n.a.</td>
<td>68.7</td>
<td>1.97</td>
<td>0.69</td>
<td>0.49</td>
<td>0.71</td>
<td>51.80</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>2 n.a.</td>
<td>64.1</td>
<td>1.97</td>
<td>0.49</td>
<td>0.40</td>
<td>0.63</td>
<td>46.29</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>3 n.a.</td>
<td>63.4</td>
<td>2.05</td>
<td>0.36</td>
<td>0.37</td>
<td>0.62</td>
<td>45.31</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>4 n.a.</td>
<td>77.9</td>
<td>2.26</td>
<td>0.38</td>
<td>0.39</td>
<td>0.82</td>
<td>54.98</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>5 n.a.</td>
<td>82.0</td>
<td>2.33</td>
<td>0.41</td>
<td>0.38</td>
<td>0.84</td>
<td>57.88</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>drainage layer</td>
<td>7.7</td>
<td>40.9</td>
<td>0.01</td>
<td>26.48</td>
<td>0.52</td>
<td>2.49</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>subgrade</td>
<td>7.4</td>
<td>108.1</td>
<td>0.88</td>
<td>8.88</td>
<td>0.63</td>
<td>1.33</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>60 - 90</td>
<td>7.3</td>
<td>132.5</td>
<td>0.02</td>
<td>67.24</td>
<td>1.44</td>
<td>8.34</td>
</tr>
<tr>
<td>Soesterberg SOE6</td>
<td>90 - 115</td>
<td>6.8</td>
<td>72.7</td>
<td>0.01</td>
<td>31.65</td>
<td>0.59</td>
<td>5.83</td>
</tr>
</tbody>
</table>

Below geotextile