Preparation and some properties of cholesterol oxidase from *Rhodococcus* sp. R14-2

Chengtao Wang · Yanping Cao · Baoguo Sun · Baoping Ji · M. J. Robert Nout · Ji Wang · Yonghuan Zhao

Received: 5 January 2008 / Accepted: 6 March 2008 / Published online: 22 March 2008
© Springer Science+Business Media B.V. 2008

Abstract *Rhodococcus* sp. R14-2, isolated from Chinese Jinhua ham, produces a novel extracellular cholesterol oxidase (COX). The enzyme was extracted from fermentation broth and purified 53.1-fold based on specific activity. The purified enzyme shows a single polypeptide band on SDS-PAGE with an estimated molecular weight of about 60 kDa, and has a *pI* of 8.5. The first 10 amino acid residues of the NH2-terminal sequence of the enzyme are A-P-P-V-A-S-C-R-Y-C, which differs from other known COXs. The enzyme is stable over a rather wide pH range of 4.0–10.0. The optimum pH and temperature of the COX are pH 7.0 and 50°C, respectively.

The COX rapidly oxidizes 3β-hydroxysteroids such as cholesterol and phytosterols, but is inert toward 3α-hydroxysteroids. Thus, the presence of a 3β-hydroxyl group appears to be essential for substrate activity. The Michaelis constant (*K* < sup>m</sup>) for cholesterol is estimated at 55 μM; the COX activity was markedly inhibited by metal ions such as Hg²⁺ and Fe³⁺ and inhibitors such as *p*-chloromercuric benzoate, mercaptoethanol and fenpropimorph. Inhibition caused by *p*-chloromercuric benzoate, mercuric chloride, or silver nitrate was almost completely prevented by the addition of glutathione. These suggests that -SH groups may be involved in the catalytic activity of the present COX.

Keywords Cholesterol oxidase · *Rhodococcus* sp. · Purification · Specificity · NH2-terminal sequence · Inhibitor

Introduction

Cholesterol oxidase (EC1.1.3.6; COX) catalyses the first step of cholesterol degradation to 4-cholestene-3-one with the reduction of oxygen at C-3 to hydrogen peroxide. COX is one of the key enzymes in microbial sterol metabolism. The interest in this enzyme is due to its industrial importance and its wide utilization in the determination of cholesterol in blood serum and food (Flegg 1973; Parra et al. 2007), and to its assumed potential in the manufacture of diets with reduced cholesterol (Chenfeng et al. 2002). Indeed, dietary cholesterol degradation is considered as a means of protection against atherosclerosis. Other possible applications of COX are in the production of precursors for the chemical synthesis of pharmaceutical steroid hormones (Alexander et al. 1995), and for its insecticidal activity that is vital for pest control strategies employing transgenic crops (Shen et al. 1997). Moreover, an antiobesity effect was observed for 4-cholestene-3-one, the COX reaction product (Suzuki 1993). Due to these multiple and various applications as well as basic aspects, COXs merit thorough scientific investigation.

COX has been isolated from several microbial sources, including species of *Arthrobacter* (Wenhsiang et al. 1988),
We collected 70 samples including fermented foods, soil, waste waters and agricultural compost, from supermarkets, zoo, meat processing factories and tanning industries. The samples (around 1 g) were added to test tubes (20 ml) of selective medium I (5 ml), and were incubated at 30°C at 150 rpm for 3–4 days. To purify the enriched strains, 100 µl of the incubated suspensions were added to new test tubes of the same medium, and incubated under the same conditions for a subsequent 3–4 times. The final subcultures were spread and embedded in the medium PYG (1.0% peptone, 0.4% yeast extract, 0.1% glucose, 0.5% NaCl, 1.8% agar, pH 7.2). The plates were then incubated at 30°C for about 24 h, and bacterial colonies appeared were replica-plated by toothpick onto the isolation medium plates. The replica plates were then incubated at 30°C for 24 h.

In order to select the cholesterol oxidase-producing strains, a colony staining method was used on the agar plates (Yazdi et al. 2000). Strains able to produce the red colour were selected and cultivated at 30°C in 5 ml of liquid isolation medium with constant shaking. The bacterial cultures were centrifuged (7,000 × g) for 10 min. The supernatant fluids were assayed for extracellular activity of cholesterol oxidase. To find the cell-bound COX, the cellular pellets were washed twice with 0.1 M phosphate buffer (pH 7.2). When no activity was found in the buffer, the pellet was re-suspended in the same buffer containing 0.1% of Triton X-100 and fallen to pieces by sonication (400 W, 8 min) in ice-bath condition. The suspension was re-centrifuged (10,000 × g, 10 min) and the supernatants were used for the assay of released cell-bound COX.

Fermentation conditions for crude COX

For production of extracellular COX, strain R14-2 was grown in the optimized medium defined by orthogonal array designs (Chengtao et al. 2008), containing (g/l): cholesterol, 2.0; yeast extract, 8.0; peptone, 4.0; NH₄Cl, 1.0; NaCl, 1.0; KH₂PO₄, 0.5; Na₂HPO₄, 0.25; MgSO₄, 0.15; ZnSO₄, 0.01; CaCl₂, 0.02; FeSO₄, 0.01 and Tween 80, 2.0 ml/l. To avoid cholesterol coagulation, it was dispersed by sonication of the medium for 10 min. pH was adjusted to 7.4 before sterilization. Optimum culture conditions for strain R14-2 were 33°C on a rotary shaker (150 rpm) (Chengtao et al. 2007). After 60 h of incubation, the culture broth was centrifuged at 7,000 × g for 10 min at 4°C. The supernatant obtained was used as the crude enzyme source. Extracellular COX production after 60 h was about 1.5 units/ml.

Extraction and purification of a cholesterol oxidase

For the enzyme extraction, 145 g of ammonium sulfate (60% saturation, 0°C) was slowly added to the supernatant.

Materials and methods

Materials

DEAE-Sepharose fast flow, Sephadex G-150, protein standard markers and IEF markers were purchased from Pharmacia Co. (Amersham Biosciences, Sweden). Cholesterol (5-cholesterol-3β-ol), 4-cholesterol-3-one, β-sitosterol (Sitost-5-en-3β-ol), 7-dehydrocholesterol, cholic acid, deoxycholic acid, 5α-androstan-3,17β-diol, 3-keto-4-en steroid, fenpropimorph and silica gel plates (Sigma, T6154) were procured from Sigma-Aldrich Chemical Co. (St. Louis, MO). Stigmasterol (Stigmast-5-en-3β-ol), β-Cholesterol (5α-cholestan-5-en-3β-ol), 5-androsten-3β-ol-17-one and kieselguhr were from Merck Co. (Beijing, China). Glutathione, p-chloromercuric benzoate, β-mercaptoethanol, EDTA, Tween80 and Triton X-100 were obtained from Fluka. The other chemicals used were of analytical grade.

Isolation and selection of cholesterol oxidase-producing strains

Selective medium I (Arima et al. 1969), containing (g/l): NH₄NO₃, 15; KH₂PO₄, 0.25; MgSO₄·H₂O, 0.25; FeSO₄·H₂O, 0.001; NaCl, 0.005; Tween 80, 1 ml and cholesterol, 2; pH 7.0. We collected 70 samples including fermented foods, soil, waste waters and agricultural compost, from supermarkets, zoo, meat processing factories and tanning industries. The samples (around 1 g) were added to test tubes (20 ml) of selective medium I (5 ml), and were incubated at 30°C at 150 rpm for 3–4 days. To purify the enriched strains, 100 µl of the incubated suspensions were added to new test tubes of the same medium, and incubated under the same conditions for a subsequent 3–4 times. The final subcultures were spread and embedded in the medium PYG (1.0% peptone, 0.4% yeast extract, 0.1% glucose, 0.5% NaCl, 1.8% agar, pH 7.2). The plates were then incubated at 30°C for about 24 h, and bacterial colonies appeared were replica-plated by toothpick onto the isolation medium plates. The replica plates were then incubated at 30°C for 24 h.

In order to select the cholesterol oxidase-producing strains, a colony staining method was used on the agar plates (Yazdi et al. 2000). Strains able to produce the red colour were selected and cultivated at 30°C in 5 ml of liquid isolation medium with constant shaking. The bacterial cultures were centrifuged (7,000 × g) for 10 min. The supernatant fluids were assayed for extracellular activity of cholesterol oxidase. To find the cell-bound COX, the cellular pellets were washed twice with 0.1 M phosphate buffer (pH 7.2). When no activity was found in the buffer, the pellet was re-suspended in the same buffer containing 0.1% of Triton X-100 and fallen to pieces by sonication (400 W, 8 min) in ice-bath condition. The suspension was re-centrifuged (10,000 × g, 10 min) and the supernatants were used for the assay of released cell-bound COX.

Fermentation conditions for crude COX

For production of extracellular COX, strain R14-2 was grown in the optimized medium defined by orthogonal array designs (Chengtao et al. 2008), containing (g/l): cholesterol, 2.0; yeast extract, 8.0; peptone, 4.0; NH₄Cl, 1.0; NaCl, 1.0; KH₂PO₄, 0.5; Na₂HPO₄, 0.25; MgSO₄, 0.15; ZnSO₄, 0.01; CaCl₂, 0.02; FeSO₄, 0.01 and Tween 80, 2.0 ml/l. To avoid cholesterol coagulation, it was dispersed by sonication of the medium for 10 min. pH was adjusted to 7.4 before sterilization. Optimum culture conditions for strain R14-2 were 33°C on a rotary shaker (150 rpm) (Chengtao et al. 2007). After 60 h of incubation, the culture broth was centrifuged at 7,000 × g for 10 min at 4°C. The supernatant obtained was used as the crude enzyme source. Extracellular COX production after 60 h was about 1.5 units/ml.

Extraction and purification of a cholesterol oxidase

For the enzyme extraction, 145 g of ammonium sulfate (60% saturation, 0°C) was slowly added to the supernatant.
fluid (400 ml) with stir (200 rpm, on magnetic stirrer) and allowed to stand for 4 h at 4°C. The precipitate thus formed was obtained by centrifugation (10,000×g, 10 min) and dissolved with 10 mM buffer. The insoluble materials were discarded by centrifugation. The supernatant fluid was directly applied to a DEAE-Sepharose FF column (1.5×20 cm²) equilibrated with 10 mM KPB (potassium phosphate buffer, pH 8.5), and the column was washed extensively with 500 ml of the same buffer. The cholesterol oxidase was not absorbed on the column under the conditions employed. The active fractions were pooled, and then concentrated by ultrafiltration on a Pallcon Membrane PTGC OLC M2 (Millipore, Bedford, Mass., USA). Commercial cholesterol was recrystallised in 50% ethanol, and the recrystallised cholesterol was used as the adsorbent for the enzyme. The concentrate (500 mg protein per 100 ml) was loaded onto a kieselguhr-cholesterol affinity column (1.0×30 cm²) equilibrated with 10 mM KPB (Kamei et al. 1978). After washing the column with 100 ml of 10 mM KPB, cholesterol oxidase was eluted with 0.1% Triton X-100, also in 10 mM KPB. To remove cholesterol and Triton X-100 from the enzyme solution, eluates were passed through a Sephadex G-150 column (1.5×90 cm²) equilibrated with 10 mM KPB. The active fractions were combined, concentrated as above and used for the characterization of cholesterol oxidase.

Determination of activity and concentration of the enzyme

The assay of COX activity was based on the conversion of cholesterol to 4-cholestene-3-one (or H2O2) according to the method described by Richmond (1973). One unit (U) of COX is defined as the amount of enzyme required to produce 1 μmol of 4-cholestene-3-one (or H2O2) per minute under the assay conditions. Protein (enzyme) concentration was determined by the method of Bradford (1976) using BSA as a standard for plotting a standard curve, measuring the absorbance at 595 nm. Cell density was determined by measuring the culture absorbance at 600 nm using a spectrophotometer. Cholesterol was measured by the enzymatic method of Allain et al. (1974).

Purification of cholesterol metabolites

To purify cholesterol metabolites, the culture medium was extracted twice and purified by preparative thin layer chromatography (TLC). Cholesterol oxide, present in the ethylacetate extracts, was analyzed by TLC according to the method of Aihara et al. (1986).

The purified substances were identified using gas chromatography (GC)–mass spectrosopy (MS). GC–MS was performed on an Autospec Q high-resolution mass spectrometer (Waters Corp.) housing a 30-mm by 0.32-mm DB-1 (0.25 μm film thickness) fused silica column using temperature-programmed operation from 185 to 295°C at increments of 2°C per minute with initial and final isothermal periods of 2 and 30 min, respectively. Electron ionization (70 electron volts) mass spectra were obtained by repetitive scanning of the mass range 50–1,000 amu throughout the elution of compounds from the GC column.

SDS-PAGE, IEF electrophoresis and NH2-terminal amino acid sequence

Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli 1970) was carried out on 12 g/l resolving and 50 g/l stacking gels in a mini-electrophoresis equipment (ATTO Co., Japan) along with the standard proteins (Pharmacia Co., Sweden).

Isoelectric focusing electrophoresis (IEF) was performed in the Phast System using PhastGel IEF 3-9 (homogenous polyacrylamide gels containing Pharmalyte carrier ampholytes). Broad pI calibration kits (proteins pI 3.50–9.30) were used as markers in the pI value determinations.

NH2-terminal amino acid sequence of the enzyme was determined by automated Edman method using a gas-phase protein sequencer (Applied Biosystems, Model 476A, USA) at Peking University (Beijing, China).

Substrate specificity of the enzyme

Steroids dissolved in propan-2-ol (50 μl) were mixed with 3 ml of 50 mM phosphate buffer (pH 7.0) containing 0.1 ml of Triton X-100, 0.1 ml of 4-aminoantipyrine (2.4 mM) and 0.1 ml of phenol (0.4 M) at 30°C. In most instances, the steroids (0.1 mM) were oxidized with 0.02 U of cholesterol oxidase from R14-2. The hydrogen peroxide produced was monitored using horseradish peroxidase (0.18 U) which oxidatively coupled the 4-aminoantipyrine and phenol to give a quinoneimine absorbing at 500 nm. The kinetic constants were determined using Hanes-Woolf plots based on the initial reaction rates (Eisenthal et al. 1974).

Effect of temperature and pH on enzyme activity and stability

The effect of pH and temperature on COX activity were determined according to the method of Kim and Seong (2002). The stability of COX (about 5 U/ml) at buffers of pH 2.0–12.0 was carried out at 4°C for 2 h, and the temperature stability of the enzyme in 0.1 M phosphate buffer of pH 7.0 was carried out between 0 and 80°C for 0.5–1 h. Then, their remaining activity of the enzyme liquids was measured with 0.1 mmol/l cholesterol as substrate.
Effect of metal ions and reagents

Various metal salts were examined for their effects on COX activity, each at a final concentration of 0.1 mM. Enzyme (1.8–2.0 μg) was incubated with each metal salt at 30°C for 10 min in the medium of the 4-cholesten-3-one assay (3 ml) devoid of cholesterol. Then, the enzyme reaction was started by adding 1.0 μmol cholesterol (0.2 ml cholesterol solution in isopropanol), and the increase in absorbance at 240 nm was followed for 10 min.

Results and discussion

Isolation and selection of the cholesterol oxidase-producing strains

Many cholesterol oxidase-producing strains were isolated from quite different environments (Chengchun et al. 1999; Yazdi et al. 2001; Chengtao et al. 2005). Fermented foods, especially cholesterol-rich sausage, ham, fish, milk, preserved meat, smoked meat and shrimp paste, were also important sources of cholesterol-degrading strains.

In the primary screening, 322 bacterial colonies with different cholesterol-degrading activities had been isolated from 70 samples. We discovered that many fermented foods contain cholesterol-degrading bacteria. The ability to degrade cholesterol among the isolates was as follows: 8 strains degraded more than 80%, 32 strains degraded 50–79%, 102 strains 20–49% and 180 strains less than 20%. Among them, strain R14-2 and R22-4, isolated from Jin-hua ham and La-Rou summer meat, two China traditional fermented meat products, degraded 97.5% and 94.7% of cholesterol in 7 days, respectively. In comparison, in a study carried out by Arima et al. (1969) to determine of cholesterol-degrading potency, among 256 species of bacteria, only 18 species were able to degrade more than 50% under the same conditions, in media containing 0.1% cholesterol.

In order to select the cholesterol oxidase-producing strains, forty of the strains with the highest degrading ability (more than 50%) were selected for further studies. A colony staining method was used on agar plates. Twenty-five of the strains able to produce the red colour were selected and cultivated in liquid medium with constant shaking at 30°C. The culture broths were assayed for intracellular and extracellular activity of cholesterol oxidase and known cholesterol metabolites in the product. Among the twenty-five strains tested, the highest extracellular activities of cholesterol oxidase and cholesterol-degrading efficiency was observed in strain R14-2, and the highest membrane-bound activity in strain R22-4. After 60 h of incubation at the optimized medium and culture conditions, extracellular COX production of R14-2 was about 1.5 U/ml (Chengtao et al. 2005). In contrast, the maximum COX production from Rhodococcus sp. GKI (Elalami et al. 1999) and Breibacterium sp. DGCDC-82 (Lv et al. 2002) were 0.38 U/ml after 90 h cultivation and 1.285 U/ml after 36 h culture, respectively.

From the data from TLC (Fig. 1) and GS–MS (data not shown), we concluded that 4-cholestene-3-one is the first and most probably major accumulating metabolite of cholesterol degradation by strains R14-2 and R22-4 (Fig. 2).

Identification of selected bacterium

Based on the phenotypical criteria according to Bergey’s Manual of Systematic Bacteriology (Krieg et al. 1984) and using API 50 CH (BioMerieux, Marcy l’Etoile, France) and the Vitek BACIL card and corresponding database, the selected strains R14-2 and R22-4 were preliminarily identified (Chengtao et al. 2005) as Rhodococcus sp. and Breibacterium sp. (data not shown), respectively. The Rhodococcus sp. strain R14-2 having the highest cholesterol oxidase activity was selected for further investigation.

Purification and confirmation of cholesterol oxidase of Rhodococcus sp. R14-2

Extracellular COX from the culture supernatants was purified using different purification protocols (summarized in Table 1). Sixty percent ammonium sulfate precipitation followed by ion-exchange chromatography on DEAE-Sepharose FF increased the specific activity 2.4- and 28.2-fold, respectively. The specific activity of COX after gel filtration chromatography on Sephadex G-150 increased more than 53.1-fold. The purified COX had a final specific

Fig. 1 The determination of metabolites of cholesterol degradation by R14-2 on thin layer chromatography (TLC). A: metabolites of cholesterol degradation by R14-2; B: standard of (Sigma); C: standard of 4-cholestene-3-one (Sigma)
activity of 55.8 U/mg with a 27.9% recovery based on the initial culture supernatant.

Molecular properties of the enzyme

After the combination of various chromatographic steps, the finally eluted proteins were subjected to SDS-PAGE and IEF. Purified COX migrated as a single polypeptide chain with an apparent molecular weight of 60 kDa on SDS-PAGE under reducing (Fig. 3, lane 1) or non-reducing conditions. And pI of the enzyme was approximately 8.7 on isoelectric focusing electrophoresis (IEF). The other COXs (Table 2), which were isolated from, N. erythropo- lism, B. sterolicum, C. cholesterolicum, Proteobacteria Y-134 (CHO-U), Streptomyces and S. commune, show similarity to the present COX as they are single polypeptide chains of 67, 54.9, 57, 56, 58, 30 and 53 kDa molecular mass and have pI of 8.9, 8.9, 8.7, 5.5, 4.3, 5.1, and 5.1, respectively. In contrast, CHO-A from Proteobacteria Y-134 is quite different as it consists of two identical protein subunits of 115 kDa of molecular mass with a pI of 7.0 (Isobe et al. 2003).

NH2-terminal sequence of the first 10 amino acid residues of the enzyme was APPVASCRYC, which was clearly different from other COXs (as shown in Table 2).

Table 1 Purification stages of cholesterol oxidase of Rhodococcus sp. R14-2

<table>
<thead>
<tr>
<th>Phases</th>
<th>Total protein (mg)</th>
<th>Total activity (U)</th>
<th>Specific activitya (U mg⁻¹)</th>
<th>Fold purification</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell free supernatant</td>
<td>1,480</td>
<td>1,560</td>
<td>1.05</td>
<td>1.0</td>
<td>100</td>
</tr>
<tr>
<td>(NH4)2SO4 precipitation</td>
<td>986</td>
<td>1,490</td>
<td>1.51</td>
<td>1.4</td>
<td>95.5</td>
</tr>
<tr>
<td>DEAE-Sepharose FF</td>
<td>35.8</td>
<td>1,060</td>
<td>29.61</td>
<td>28.2</td>
<td>67.9</td>
</tr>
<tr>
<td>Kieselguhr-cholesterol affinity chromatography</td>
<td>18.5</td>
<td>740</td>
<td>40.00</td>
<td>38.1</td>
<td>47.4</td>
</tr>
<tr>
<td>Sephadex G-150</td>
<td>7.8</td>
<td>435</td>
<td>55.77</td>
<td>53.1</td>
<td>27.9</td>
</tr>
</tbody>
</table>

a Specific activity of COX was expressed in U/mg of protein

Substrate specificity and action mode of the enzyme

The extracellular COX from Rhodococcus sp. R14-2 rapidly oxidized 3β-hydroxysteroids such as cholesterol and phytosterols (such as β-sitosterol, stigmasterol), but had less effect on 7-dehydrocholesterol (see Table 3). The enzyme was inert toward 3α-hydroxysteroids (sterols with 3α-OH), such as cholic acid, deoxycholic acid and 5α-androstan-3α,17β-diol. Thus, the C-5 double bond and the alkyl chain in sterol molecules appeared to be necessary for an adequate oxidation of the sterol 3β-ol by the present enzyme. We also studied the effect of the C-5 double bond and the lateral chain in the substrate molecule on COX activity, using either 5α-cholestan-5-en-3β-ol or

![Fig. 2 Mechanism of cholesterol oxidase action and the assay of hydrogen peroxide by the oxidative coupling of phenol 4-aminoantipyrine catalysed by a peroxidase](image)
5-androsten-3β-ol-17-one as substrates. We observed that the lateral chain in the substrate molecule affected the activity of the COX with C-5 double bond. Moreover, the enzyme was inactive with A-ring- or B-ring-modified sterols (e.g. 3-keto-4-en steroid).

The COXs are simply referred to as oxidases, since their mode of action is dependent only on the presence of molecular oxygen (Inouye et al. 1982), whereas others are considered to be true NAD-dependent dehydrogenases, such as the coupled enzyme 3β-hydroxysteroid: NAD(P) oxidoreductase-3-ketosteroid Δ^4, Δ^5-isomerase (3β-hydroxy steroid dehydrogenase: Δ^4-isomerase; Δ: the steroid ring) from the mitochondrial fraction of human placenta (Stadtman et al. 1954). Cholesterol oxidase is a monomeric flavoenzyme (FAD-containing enzyme) that catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one (Stadtman et al. 1954). Two forms of the enzyme are known, one containing the cofactor non-covalently bound to the protein and one in which the cofactor is covalently linked to a histidine residue.

The X-ray structure of the enzyme of *B. sterolicum* containing covalently bound FAD has been determined (Vrielink et al. 1993; Kinya et al. 2001). Uwajima et al. (1973) found that this enzyme contains a FAD prosthetic group as the oxidase apoprotein. A model for the steroid substrate, cholesterol, can be positioned in the pocket revealing the structural factors that result in different substrate binding affinities between the two known forms of the enzyme. The enzyme from *B. sterolicum* contains the FAD cofactor covalently bound to His^{121} (Kinya et al. 2001). The

![Fig. 3 SDS-PAGE patterns of the purified enzyme. SDS-PAGE was done on 12% gel under reducing conditions. Lane 1: pattern after Sephadex G-150; Lane 2: pattern after DEAE-Sepharose FF; Lane M: protein molecular mass markers: Phosphorylase b (97.0 kDa), Albumin (67.0 kDa), Ovalbumin (45.0 kDa), Carbonic anhydrase (30.0 kDa), Soybean trypsin inhibitor (20.1 kDa) and α-lactalbumin (14.4 kDa).](image)

Table 2 Molecular properties of cholesterol oxidase of *Rhodococcus* sp. R14-2, compared with other enzymes in literature data

<table>
<thead>
<tr>
<th>Enzymes from strains</th>
<th>Molecular weight (kDa)</th>
<th>pI</th>
<th>N-terminal amino acid sequence</th>
<th>Km for cholesterol (μM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodococcus sp. R14-2</td>
<td>60</td>
<td>8.5</td>
<td>APPVASCRCYD</td>
<td>55</td>
<td>This work</td>
</tr>
<tr>
<td>Rhodococcus sp. GKI</td>
<td>59</td>
<td>8.9</td>
<td>APPVAXRYXF^4</td>
<td>300</td>
<td>Elalami et al. (1999)</td>
</tr>
<tr>
<td>Arthrobacter simplex USA18</td>
<td>54</td>
<td></td>
<td></td>
<td>28</td>
<td>Wenhsiu et al. (1988)</td>
</tr>
<tr>
<td>Brevibacterium sterolicum</td>
<td>55</td>
<td>4.4–5.1</td>
<td>ADAAPSRTLADGDRV</td>
<td>140</td>
<td>Ohta et al. (1991) and Fujishiro et al. (1990)</td>
</tr>
<tr>
<td>B. sterolicum ATCC21387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol oxidase I</td>
<td>54.9</td>
<td>8.9</td>
<td>AOSRTLADGDRVPA</td>
<td>1,100</td>
<td>Ohta et al. (2002)</td>
</tr>
<tr>
<td>Cholesterol oxidase II</td>
<td>46.5</td>
<td>4.7</td>
<td>VPAGSAGSLGS</td>
<td>300</td>
<td>Ohta et al. (2002)</td>
</tr>
<tr>
<td>Corynebacterium cholestericum</td>
<td>57</td>
<td>8.7</td>
<td></td>
<td></td>
<td>Shirokane et al. (2003)</td>
</tr>
<tr>
<td>Nocardia erythropolis</td>
<td>55; 67</td>
<td></td>
<td></td>
<td>5,140</td>
<td>Sojo et al. (1997)</td>
</tr>
<tr>
<td>Pseudomonas sp.</td>
<td>56</td>
<td>5.0–5.5</td>
<td></td>
<td>200</td>
<td>Noriyuki et al. (1998)</td>
</tr>
<tr>
<td>Pseudomonas cepacia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHO-A</td>
<td>115</td>
<td>4.3</td>
<td>SXTPPPGFPAAGSLYQ</td>
<td>65</td>
<td>Isobe et al. (2003)</td>
</tr>
<tr>
<td>CHO-U</td>
<td>58</td>
<td>7.0</td>
<td>SXTPPPGFPAAGSLYQ</td>
<td>26</td>
<td>Isobe et al. (2003)</td>
</tr>
<tr>
<td>Schizophyllum commune</td>
<td>53</td>
<td>5.1</td>
<td></td>
<td>330</td>
<td>Fukuyama et al. (1979)</td>
</tr>
<tr>
<td>Streptomyces hygroscopicus</td>
<td>55</td>
<td>4.4–5.1</td>
<td></td>
<td>240</td>
<td>Giovanni et al. (1997)</td>
</tr>
<tr>
<td>Streptomyces sp.</td>
<td>30</td>
<td>5.1</td>
<td>ADAPPSRTLADGDRV</td>
<td>217</td>
<td>Fujishiro et al. (1990) and Pornpen et al. (2005)</td>
</tr>
</tbody>
</table>

^4 X of N-terminal amino acid sequence indicates an unknown residue
similarities in catalytic properties of the R_{14-2} COX paired with the differences in their primary structures, and a detailed study of the kinetic mechanism of the enzyme are currently underway.

Kinetic analysis of the enzyme

Cholesterol is poorly soluble in water. Thus, enzymatic H_{2}O_{2} generation reactions were carried out using cholesterol emulsified with a surfactant, 0.03% Triton X-100. Reaction kinetics of the COX were examined under standard assay conditions with the substrate concentration as only variable. The saturation curve of COX was typical of a Michaelis-Menten relation (Fig. 4). The Km (Michaelis constant) value and Vmax for cholesterol were determined to be 55 \mu M and 72.5 \mu mol min^{-1} mg^{-1} of protein by the method of Lineweaver-Burk (Eisenthal et al. 1974), respectively. The catalytic studies revealed a distinctive feature of its high affinity toward extremely low content, suggesting its potential application to rapid microdetermination of cholesterol in serum and food.

Effect of temperature and pH on enzyme activity and stability

The effect of temperature and pH on enzyme activity was studied with cholesterol as substrate. The heat stability of COX is useful when supplying it in a process involving cholesterol degradation, e.g. food-cholesterol degradation. The R_{14-2} COX is very stable, possessing a broad activity range around pH 7.0. Maximum activity can be retained over 30 min at 50\degree C in 0.1 M phosphate buffer of pH 7.0, but at temperatures higher than 60\degree C, COX rapidly lost its activity and at 70\degree C was completely inactivated within 1 h. In comparison, the optimum temperatures of the COXs from S. polychromogenes (Kim and Seong 2002), A. simplex (Wenhsiung et al. 1988) and B. sterolicum (Kinya et al. 2001) were 37, 50, and 55\degree C, respectively. The pH stability of purified enzyme was carried out at 4\degree C. COX retained its full activity at pHs between 4 and 10 for 2 h, with a maximum activity at pH 7.0, but at higher or lower pHs, enzyme activity was decreased significantly. After freezing and thawing for four times, 92% of the activity remained.

Effect of chemical reagents on enzyme activity

The effect of metal ions such as Ag^{+}, Li^{+}, Ca^{2+}, Fe^{2+}, Mg^{2+}, Mn^{2+}, Zn^{2+}, Pb^{2+}, Hg^{2+}, Co^{2+} and Fe^{3+} on the enzyme activity was also investigated (Table 4). None of the metal salts, CaCl_{2}, Co(NO_{3})_{2}, Pb(CH_{3}COO)_{2}, FeSO_{4}, MnSO_{4}, MgSO_{4}, Li_{2}SO_{4} showed, at 0.1 mM, a significant inhibitory effect on the enzyme activity. The inhibition was only around 15% of the control activity. Under the same conditions, however, Zn^{2+}, Cu^{2+} and Ag^{+} inhibited the enzyme activity by 70%, 65% and 72% respectively. Hg^{2+} at final concentrations of 50, 10, and 1 \mu M inhibited COX activity by 95%, 80%, and 15%, respectively. The activity of the enzyme was seriously inhibited by the addition of Fe^{3+} (FeCl_{3}). Thus, the present COX is extremely sensitive

Table 3 Substrate specificities of cholesterol oxidase from Rhodococcus sp. R_{14-2}

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Relative activity (%)</th>
<th>Substrate</th>
<th>Relative activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (5-cholestene-3β-ol)</td>
<td>100</td>
<td>5-Androsten-3β-ol-17-one</td>
<td>15</td>
</tr>
<tr>
<td>β-Sitosterol (Sitost-5-en-3β-ol)</td>
<td>80</td>
<td>3-Keto-4-en steroid</td>
<td>0</td>
</tr>
<tr>
<td>Stigmasterol (Stigmast-5-en-3β-ol)</td>
<td>78</td>
<td>Cholic acid</td>
<td>0</td>
</tr>
<tr>
<td>7-Dehydrocholesterol</td>
<td>37</td>
<td>Deoxycholic acid</td>
<td>0</td>
</tr>
<tr>
<td>β-Cholestanol (5α-cholestan-5-en-3β-ol)</td>
<td>24</td>
<td>5α-Androstan-3z,17β-diol</td>
<td>5</td>
</tr>
</tbody>
</table>

Effect of temperature and pH on enzyme activity and stability

The effect of temperature and pH on enzyme activity was studied with cholesterol as substrate. The heat stability of COX is useful when supplying it in a process involving cholesterol degradation, e.g. food-cholesterol degradation. The R_{14-2} COX is very stable, possessing a broad activity range around pH 7.0. Maximum activity can be retained over 30 min at 50\degree C in 0.1 M phosphate buffer of pH 7.0, but at temperatures higher than 60\degree C, COX rapidly lost its activity and at 70\degree C was completely inactivated within 1 h. In comparison, the optimum temperatures of the COXs from S. polychromogenes (Kim and Seong 2002), A. simplex (Wenhsiung et al. 1988) and B. sterolicum (Kinya et al. 2001) were 37, 50, and 55\degree C, respectively. The pH stability of purified enzyme was carried out at 4\degree C. COX retained its full activity at pHs between 4 and 10 for 2 h, with a maximum activity at pH 7.0, but at higher or lower pHs, enzyme activity was decreased significantly. After freezing and thawing for four times, 92% of the activity remained.

Effect of chemical reagents on enzyme activity

The effect of metal ions such as Ag^{+}, Li^{+}, Ca^{2+}, Fe^{2+}, Mg^{2+}, Mn^{2+}, Zn^{2+}, Pb^{2+}, Hg^{2+}, Co^{2+} and Fe^{3+} on the enzyme activity was also investigated (Table 4). None of the metal salts, CaCl_{2}, Co(NO_{3})_{2}, Pb(CH_{3}COO)_{2}, FeSO_{4}, MnSO_{4}, MgSO_{4}, Li_{2}SO_{4} showed, at 0.1 mM, a significant inhibitory effect on the enzyme activity. The inhibition was only around 15% of the control activity. Under the same conditions, however, Zn^{2+}, Cu^{2+} and Ag^{+} inhibited the enzyme activity by 70%, 65% and 72% respectively. Hg^{2+} at final concentrations of 50, 10, and 1 \mu M inhibited COX activity by 95%, 80%, and 15%, respectively. The activity of the enzyme was seriously inhibited by the addition of Fe^{3+} (FeCl_{3}). Thus, the present COX is extremely sensitive

![Fig. 4 Substrate saturation curves of cholesterol oxidase (n = 3)](image-url)
However, a reversible noncompetitive mechanism for Rhodococcus competitive mechanism for the COX from bition is instantaneous and followed a reversible about 80% of the enzyme activity. Furthermore, the inhibition selectively the enzyme activity, 50 mg/l inhibiting propimorph, a morpholine derivative, had been shown to catalytic activity of the present COX. In addition, fenpropimorph suggests that -SH groups may be involved in the completely prevented by the addition of glutathione. This chemical reagents. Inhibition caused by COXs, we continue investigating their response to diverse reagents (Such as EDTA), indicating that the enzyme is not a metalloprotease.

To improve our understanding of the properties of these COXs, we continue investigating their response to diverse chemical reagents. Inhibition caused by p-chloromercuric benzoate, mercuric chloride, or silver nitrate was almost completely prevented by the addition of glutathione. This finding suggests that -SH groups may be involved in the catalytic activity of the present COX. In addition, fenpropimorph, a morpholine derivative, had been shown to block selectively the enzyme activity, 50 mg/l inhibiting about 80% of the enzyme activity. Furthermore, the inhibition is instantaneous and followed a reversible competitive mechanism for the COX from Rhodococcus sp. R14-2. However, a reversible noncompetitive mechanism for COXs from N. erythropolis and S. commune (Smith et al. 1975), and an irreversible type of inhibition is observed for P. testeroni cholesterol oxidase (Hesselink et al. 1990).

Although cholesterol oxidases from some bacteria have some similarities with the present COX, such as rapid oxidation of 3β-hydroxysteroids and inactivity towards 3α-hydroxysteroids, The electrophoretic pattern on SDS-PAGE, together with NH2-terminal sequence, kinetic data, stability, pI value, temperature and pH for optimal activity and the estimated molecular mass of 60 kDa, strongly indicate that the extracellular cholesterol oxidase from strain R14-2 is a different form of the enzyme cholesterol oxidase. Our results also show that Rhodococcus sp. R14-2 can be considered as a potentially interesting source of COX for clinical and industrial uses, because of its good thermal stability, higher affinity for cholesterol and broad pH activity range.

Acknowledgements This work was supported in part by a support program for the training of excellent persons of Beijing (project No. 20061D0500300137) and a grant from the Ministry of Science and Technology of China (National Basic Research Program of China, 2007CB707802) and a support from the Education Department of Heilongjiang Province (No. 10531125).

References

Table 4 Effect of defined inhibitors on activity of purified cholesterol oxidase of Rhodococcus sp. R14-2

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Concentration (mM)</th>
<th>Relative activity (%)</th>
<th>Inhibitors</th>
<th>Concentration (mM)</th>
<th>Relative activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>100</td>
<td>Hg2+ (HgCl2)</td>
<td>50 μM</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NaN3</td>
<td>0.1</td>
<td>102</td>
<td>Co2+ [Co(NO3)2]</td>
<td>0.1</td>
<td>85</td>
</tr>
<tr>
<td>p-Chloromercuric benzoate</td>
<td>0.1</td>
<td>15</td>
<td>Mg2+ (MgSO4)</td>
<td>0.1</td>
<td>103</td>
</tr>
<tr>
<td>Fenpropimorph</td>
<td>50 mg/l</td>
<td>20</td>
<td>Ca2+ (CaCl2)</td>
<td>0.1</td>
<td>97</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.1</td>
<td>95</td>
<td>Pb2+</td>
<td>0.1</td>
<td>88</td>
</tr>
<tr>
<td>Ag+ (AgNO3)</td>
<td>0.1</td>
<td>28</td>
<td>Pb(CH3COO)2</td>
<td>0.1</td>
<td>95</td>
</tr>
<tr>
<td>Zn2+ (ZnSO4)</td>
<td>0.1</td>
<td>30</td>
<td>Mn2+ (MnSO4)</td>
<td>0.1</td>
<td>93</td>
</tr>
<tr>
<td>Cu2+ (CuCl2)</td>
<td>0.1</td>
<td>35</td>
<td>Li+ (Li2SO4)</td>
<td>0.1</td>
<td>93</td>
</tr>
<tr>
<td>Fe3+ (FeCl3)</td>
<td>0.1</td>
<td>10</td>
<td>Fe2+ (FeSO4)</td>
<td>0.1</td>
<td>92</td>
</tr>
<tr>
<td>NaN3</td>
<td>0.1</td>
<td>15</td>
<td>Pb2+</td>
<td>0.1</td>
<td>88</td>
</tr>
<tr>
<td>Fe2+ (FeSO4)</td>
<td>0.1</td>
<td>92</td>
<td>Zn2+ (ZnSO4)</td>
<td>0.1</td>
<td>95</td>
</tr>
<tr>
<td>Cu2+ (CuCl2)</td>
<td>0.1</td>
<td>35</td>
<td>Mn2+ (MnSO4)</td>
<td>0.1</td>
<td>93</td>
</tr>
<tr>
<td>Fe3+ (FeCl3)</td>
<td>0.1</td>
<td>10</td>
<td>Fe2+ (FeSO4)</td>
<td>0.1</td>
<td>92</td>
</tr>
</tbody>
</table>

123

