The world’s Arctic latitudes are some of the most recently colonized by birds, and an understanding of the migratory connectivity of circumpolar species offers insights into the mechanisms of range expansion and speciation. Migratory divides exist for many birds, however for many taxa it is unclear where such boundaries lie, and to what extent these affect the connectivity of species breeding across their ranges. Sabine’s gulls (Xema sabini) have a patchy, circumpolar breeding distribution and overwinter in two ecologically similar areas in different ocean basins: the Humboldt Current off the coast of Peru, and the Benguela Current off the coast of South Africa and Namibia. We used geolocators to track Sabine’s gulls breeding at a colony in the Canadian High Arctic to determine their migratory pathways and wintering sites. Our study provides evidence that birds from this breeding site disperse to different oceans during the non-breeding season. Remarkably, one breeding pair showed divergent migration pathways to overwinter in opposite oceans. This suggests that a migratory divide between wintering populations of this species exists and the colonization of favourable breeding habitat may be one of the strongest drivers of range expansion in the High Arctic.

PS17.6 Repeatability of migration routes and timing in a long-distance migratory seabird, the Long-tailed Skua Stercorarius longicaudus

Rob van Bemmelen¹, Borge Moe², Sveinn Are Hanssen², Niels Schmidt³, Olivier Gilg⁴

¹IMARES, ²NINA, ³University of Aarhus, ⁴Université de Bourgogne / Groupe de Recherche en Ecologie Arctique

During the non-breeding period, seabirds utilize ocean resources to restore energy reserves spent on reproduction and to prepare for the next breeding season. Selecting the migration routes and wintering sites that allow an individual to fulfill these needs is thus critical to its fitness. Flexibility in migratory traits may hereby allow individuals or species to successfully cope with changing resource availability or weather conditions experienced during the non-breeding season. Using geolocators to track individuals over multiple non-breeding seasons, we report on individual consistency in migratory route, wintering site and timing in an Arctic-breeding seabird, the Long-tailed Skua (Stercorarius longicaudus). Migration trajectories from two subspecies breeding in the North Atlantic ranged widely over the Atlantic Ocean, south to the Agulhas Current. Between-individual variation in trajectories and site selection was substantial, whereas individuals were highly consistent in migratory trajectories and especially in wintering site selection. Timing of autumn migration was highly variable, in particular for Scandinavian birds, these patterns are tightly linked with breeding effort. Routes and timing of spring migration showed little variation. This study shows that Long-tailed Skuas are relatively inflexible in their migration routes. Closer inspection of deviations from individual routes may enhance our understanding of the impact of year-to-year variation in environmental conditions on an individual level. Such knowledge would improve our ability to predict the impact of environmental change on this species.

PS17.7 Caspian Tern Migration and Overwintering Behavior in Western North America

Donald Lyons¹, James Tennyson¹, Allison Patterson¹, Daniel Roby¹, Yasuko Suzuki¹, Peter Losch¹

¹Oregon State University

The Caspian Tern (Hydroprogne caspia) is a cosmopolitan species displaying a range of migratory behaviors, from relatively sedentary to long-distance migrant. In western North America, Caspian Terns nest in coastal or interior freshwater habitats from Mexico to Alaska, but most nesting occurs