Short Communication

Anti-oxidant vitamin status of Russian children and elderly

M van Dusseldorp¹, EJ Poortvliet², FG de Waart³, FJ Kok⁴, AA Alexandrov⁵, V Mazaev⁵ and MB Katan¹

¹ Department of Human Nutrition, Agricultural University Wageningen, PO Box 8129, 6700 EV Wageningen, The Netherlands;
² World Health Organization, Regional Office for Europe, Nutrition Unit, Copenhagen, Denmark;
³ Department of Epidemiology and Public Health, Agricultural University Wageningen, Wageningen, The Netherlands; and
⁴ National Centre for Preventive Medicine: Institute of Preventive Cardiology, Ministry of Health of Russian Federation, Moscow

Descriptors: antioxidant vitamins, children, eastern europe, elderly, Russia

The average daily intake of vegetables and fruits (potatoes excluded) among poor Russians was 146 g in 1991 (Popkin, 1992) which is very low compared to the WHO guideline of 400 g/day. A low intake of anti-oxidant vitamins might promote oxidation of LDL and might help to explain the reported high prevalence of coronary heart disease in the Soviet Union (Deev & Oganov, 1989; Lopez, 1990). We assessed the anti-oxidant vitamin status in a sample of Russian children and elderly because these age groups are especially vulnerable to vitamin deficiency.

A letter was sent to the parents of 50 healthy 8–9 year old children who attended a middle class school in Moscow. Response was low because of concerns over HIV infection. In the end eight boys and five girls, all aged nine, participated. Furthermore, blood was sampled from 22 elderly hospitalized in the Centre of Preventive Medicine with the diagnosis of certain or possible cardiovascular disease (9 females, 13 males; age mean ± SD, 69 ± 4.5). No vitamin supplements were used by the subjects.

Fasting blood was sampled in December 1992 using 10-ml heparinized evacuated tubes. The blood was centrifuged within 1 h and the plasma was immediately stored at −20°C. Directly after centrifugation of the blood, 0.5 ml plasma was added to 4.5 ml of 5% metaphosphoric acid (HPO3) solution in order to stabilize vitamin C. Plasma samples were dispatched in dry ice to Hoffmann-La Roche (Basel) for analysis of vitamins (Hess et al., 1991; Brubacher et al., 1974) and to the Agricultural University of Wageningen for analysis of total cholesterol. Surprisingly, the cholesterol levels of the elderly were only slightly above the desired level and the vitamin status of the children and elderly was satisfactory according to US reference levels (Table 1) (Shils & Young, 1988). Two children and four elderly had marginal vitamin C levels, and five elderly ran a high risk of being vitamin C deficient (plasma level <1.94 mg/L), but low vitamin C levels occur in 2-50% of institutionalized elderly in affluent Western countries as well (Russell & Suter, 1993). Plasma levels of vitamin E and C of the Russian children were quite similar to those of healthy children from Austria (Marktl et al., 1982) assayed in the same laboratory. Healthy adults (47–88 years) in Germany have β-carotene levels of 0.23 mg/L (Stahl et al., 1992), similar to the value of 0.21 mg/L found here in elderly Moscovites. The small number of subjects makes it difficult to draw conclusions from our data, but they may still be relevant in view of the scarcity of reliable data on nutrient

Table 1 Plasma total cholesterol (mg/dl) and vitamin levels (mg/L) of 13 healthy school children aged nine and 22 hospitalized elderly aged 65–83 living in Moscow in December 1992

<table>
<thead>
<tr>
<th></th>
<th>Children</th>
<th>Elderly</th>
<th>Adequate status¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Range</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>147 ± 23</td>
<td>112–190</td>
<td>213 ± 39</td>
</tr>
<tr>
<td>Vitamin E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(α-tocopherol)</td>
<td>9.5 ± 1.5</td>
<td>7.0–11.7</td>
<td>159 ± 3.4</td>
</tr>
<tr>
<td>Vit E (chol *10³)</td>
<td>5.9 ± 0.7</td>
<td>4.7–7.0</td>
<td>6.8 ± 1.2</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>10.3 ± 3.1</td>
<td>4.8–15.2</td>
<td>5.0 ± 4.0</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>0.36 ± 0.05</td>
<td>0.28–0.48</td>
<td>0.73 ± 0.19</td>
</tr>
<tr>
<td>β-carotene</td>
<td>0.22 ± 0.12</td>
<td>0.07–0.52</td>
<td>0.21 ± 0.12</td>
</tr>
<tr>
<td>a-carotene</td>
<td>0.06 ± 0.06</td>
<td>0.01–0.22</td>
<td>0.06 ± 0.03</td>
</tr>
</tbody>
</table>

¹ Shils & Young, 1988; * children, † adults.

Correspondence: M van Dusseldorp.
Received 3 March 1995; revised 7 August 1995; accepted 21 August 1995
intake in Russia. Our results are consistent with food consumption data of 312 Russian children of the same age as those of the present study which show a normal intake of vitamin A and carotene and a low intake of vitamin C of 41 mg/day (AA Alexandrov, National Centre for Preventive Medicine, Moscow, unpublished data). Our findings suggest that the antioxidant vitamin status of Moscovites might not be markedly worse than that in other European countries. This impression is strengthened by the finding of high adipose tissue concentrations of α-tocopherol and β-carotene in healthy men from Moscow (Kardinaal et al, 1993).

Acknowledgements—We are grateful to the Department of Vitamin and Nutrition Research of Hoffmann-La Roche for performing the vitamin assays.

References


