Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 20 / 70

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: metisnummer==1135559
Check title to add to marked list
Vector competence of biting midges and mosquitoes for Shuni virus
Möhlmann, Tim W.R. ; Oymans, Judith ; Wichgers Schreur, Paul J. ; Koenraadt, Constantianus J.M. ; Kortekaas, Jeroen ; Vogels, Chantal B.F. - \ 2019
PLoS Neglected Tropical Diseases 13 (2019)2. - ISSN 1935-2727 - p. e0006609 - e0006609.

BACKGROUND: Shuni virus (SHUV) is an orthobunyavirus that belongs to the Simbu serogroup. SHUV was isolated from diverse species of domesticated animals and wildlife, and is associated with neurological disease, abortions, and congenital malformations. Recently, SHUV caused outbreaks among ruminants in Israel, representing the first incursions outside the African continent. The isolation of SHUV from a febrile child in Nigeria and seroprevalence among veterinarians in South Africa suggests that the virus may have zoonotic potential as well. The high pathogenicity, extremely broad tropism, potential transmission via both biting midges and mosquitoes, and zoonotic features of SHUV require further investigation. This is important to accurately determine the risk for animal and human health, and to facilitate preparations for potential epidemics. To gain first insight into the potential involvement of biting midges and mosquitoes in SHUV transmission we have investigated the ability of SHUV to infect two species of laboratory-colonised biting midges and two species of mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Culicoides nubeculosus, C. sonorensis, Culex pipiens pipiens, and Aedes aegypti were orally exposed to SHUV by providing an infectious blood meal. Biting midges showed high infection rates of approximately 40%-60%, whereas infection rates of mosquitoes were only 0-2%. Moreover, successful dissemination in both species of biting midges and no evidence for transmission by orally exposed mosquitoes was found. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest that different species of Culicoides midges are efficient in SHUV transmission, while the involvement of mosquitoes has not been supported.

Vector competence of biting midges and mosquitoes for Shuni virus
Möhlmann, Tim W.R. ; Oymans, Judith ; Wichgers Schreur, Paul J. ; Koenraadt, Constantianus J.M. ; Kortekaas, Jeroen ; Vogels, Chantal B.F. - \ 2018
PLoS Neglected Tropical Diseases 12 (2018)12. - ISSN 1935-2727

Background: Shuni virus (SHUV) is an orthobunyavirus that belongs to the Simbu serogroup. SHUV was isolated from diverse species of domesticated animals and wildlife, and is associated with neurological disease, abortions, and congenital malformations. Recently, SHUV caused outbreaks among ruminants in Israel, representing the first incursions outside the African continent. The isolation of SHUV from a febrile child in Nigeria and seroprevalence among veterinarians in South Africa suggests that the virus may have zoonotic potential as well. The high pathogenicity, extremely broad tropism, potential transmission via both biting midges and mosquitoes, and zoonotic features warrants prioritization of SHUV for further research. Additional knowledge is essential to accurately determine the risk for animal and human health, and to assess the risk of future epizootics and epidemics. To gain first insights into the potential involvement of arthropod vectors in SHUV transmission, we have investigated the ability of SHUV to infect and disseminate in laboratory-reared biting midges and mosquitoes. Methodology/Principal findings: Culicoides nubeculosus, C. sonorensis, Culex pipiens pipiens, and Aedes aegypti were orally exposed to SHUV by providing an infectious blood meal. Biting midges showed high infection rates of approximately 40–60%, whereas infection rates of mosquitoes were lower than 2%. SHUV successfully disseminated in both species of biting midges, but no evidence of transmission in orally exposed mosquitoes was found. Conclusions/Significance: The results of this study show that different species of Culicoides biting midges are susceptible to infection and dissemination of SHUV, whereas the two mosquito species tested were found not to be susceptible.

Conserved motifs in the hypervariable domain of chikungunya virus nsP3 required for transmission by Aedes aegypti mosquitoes
Göertz, Giel P. ; Lingemann, Marit ; Geertsema, Corinne ; Abma-Henkens, Marleen H.C. ; Vogels, Chantal B.F. ; Koenraadt, Constantianus J.M. ; Oers, Monique M. van; Pijlman, Gorben P. - \ 2018
PLoS Neglected Tropical Diseases 12 (2018)11. - ISSN 1935-2727

BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging arthropod-borne (arbo)virus that causes chikungunya fever in humans and is predominantly transmitted by Aedes aegypti mosquitoes. The CHIKV replication machinery consists of four non-structural proteins (nsP1-4) that additionally require the presence of a number of host proteins for replication of the viral RNA. NsP3 is essential for CHIKV replication and has a conserved macro, central and C-terminal hypervariable domain (HVD). The HVD is intrinsically disordered and interacts with various host proteins via conserved short peptide motifs: A proline-rich (P-rich) motif that has affinity for SH3-domain containing proteins and duplicate FGDF motifs with affinity for G3BP and its mosquito homologue Rasputin. The importance of these motifs for infection of mammalian cells has previously been implicated. However, their role during CHIKV infection of mosquito cells and transmission by mosquitoes remains unclear. METHODOLOGY / PRINCIPAL FINDINGS: Here, we show that in-frame deletion of the P-rich motif is lethal for CHIKV replication in both mosquito and mammalian cells. However, while mutagenesis of the P-rich motif negatively affects replication both in mammalian and mosquito cells, it did not compromise the infection and transmission of CHIKV by Ae. aegypti mosquitoes. Mutagenesis of both FGDF motifs together completely inactivated CHIKV replication in both mammalian and mosquito cells. Importantly, mutation of a single FGDF motif attenuated CHIKV replication in mammalian cells, while replication in mosquito cells was similar to wild type. Surprisingly, CHIKV mutants containing only a single FGDF motif were efficiently transmitted by Ae. aegypti. CONCLUSIONS / SIGNIFICANCE: The P-rich motif in CHIKV nsP3 is dispensable for transmission by mosquitoes. A single FGDF motif is sufficient for infection and dissemination in mosquitoes, but duplicate FGDF motifs are required for the efficient infection from the mosquito saliva to a vertebrate host. These results contribute to understanding the dynamics of the alphavirus transmission cycle and may help the development of arboviral intervention strategies.

Vector competence of European mosquitoes for west Nile virus
Vogels, Chantal B.F. ; Göertz, Giel P. ; Pijlman, Gorben P. ; Koenraadt, Constantianus J.M. - \ 2017
Emerging Microbes and Infections 6 (2017)11. - ISSN 2222-1751
Europe - Innate immune responses - Midgut barrier - Mosquito - Salivary gland barrier - Surveillance - Vector competence - West nile virus
West Nile virus (WNV) is an arthropod-borne flavivirus of high medical and veterinary importance. The main vectors for WNV are mosquito species of the Culex genus that transmit WNV among birds, and occasionally to humans and horses, which are 'deadend' hosts. Recently, several studies have been published that aimed to identify the mosquito species that serve as vectors for WNV in Europe. These studies provide insight in factors that can influence vector competence of European mosquito species for WNV. Here, we review the current knowledge on vector competence of European mosquitoes for WNV, and the molecular knowledge on physical barriers, anti-viral pathways and microbes that influence vector competence based on studies with other flaviviruses. By comparing the 12 available WNV vector competence studies with European mosquitoes we evaluate the effect of factors such as temperature, mosquito origin and mosquito biotype on vector competence. In addition, we propose a standardised methodology to allow for comparative studies across Europe. Finally, we identify knowledge gaps regarding vector competence that, once addressed, will provide important insights into WNV transmission and ultimately contribute to effective strategies to control WNV.
Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes
Vloet, Rianka P.M. ; Vogels, Chantal B.F. ; Koenraadt, Constantianus J.M. ; Pijlman, Gorben P. ; Eiden, Martin ; Gonzales, Jose L. ; Keulen, Lucien J.M. van; Wichgers Schreur, Paul J. ; Kortekaas, Jeroen - \ 2017
PLoS Neglected Tropical Diseases 11 (2017)12. - ISSN 1935-2727
017-4068
Background: Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Principal findings: Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. Significance: We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory-reared mosquitoes and well as those hatched from field-collected eggs were found to be competent vectors. Moreover, RVFV was transmitted efficiently from indigenous lambs to mosquitoes, although the duration of host infectivity was found to be shorter than previously assumed. Interestingly, analysis of mosquito-exposed skin samples revealed previously unidentified target cells of the virus. Our findings underscore the value of including natural target species in vector competence experiments.
Virus interferes with host-seeking behaviour of mosquito
Vogels, Chantal B.F. ; Fros, Jelke J. ; Pijlman, Gorben P. ; Loon, Joop J.A. van; Gort, Gerrit ; Koenraadt, Constantianus J.M. - \ 2017
Journal of Experimental Biology 220 (2017)19. - ISSN 0022-0949 - p. 3598 - 3603.
Culex pipiens - Host preference - Manipulation - Olfaction - Virus transmission - 017-4047

Transmission of vector-borne pathogens is dependent on the hostseeking behaviour of their vector. Pathogen manipulation of the hostseeking behaviour of vectors towards susceptible hosts is supposedly beneficial for transmission. For West Nile virus (WNV), manipulation of the host-seeking behaviour of the main mosquito vector towards birds would be advantageous, because mammals are dead-end hosts. We hypothesised that WNV infection induces a stronger host-seeking response and a shift in host preference towards birds, to enhance its transmission by mosquitoes. However, here we show that WNV infection decreases the host-seeking response, and does not induce a shift in mosquito host preference. Other fitnessrelated traits are not affected by WNV infection. No effect of WNV infectionwas found on antennal electrophysiological responsiveness. Thus, the reduced host-seeking response is likely to result from interference in the mosquito's central nervous system. This is the first study that shows changes, specifically in the host-seeking behaviour induced by a pathogen, that do not favour transmission.

The role of Culex pipiens mosquitoes in transmission of West Nile virus in Europe
Vogels, Chantal B.F. - \ 2017
Wageningen University. Promotor(en): Marcel Dicke, co-promotor(en): Sander Koenraadt. - Wageningen : Wageningen University - ISBN 9789463436151 - 211
culex pipiens - mosquito-borne diseases - west nile virus - disease transmission - disease vectors - vector-borne diseases - europe - ziekten overgebracht door muskieten - west-nijlvirus - ziekteoverdracht - vectoren, ziekten - ziekten overgebracht door vectoren - europa

West Nile virus (WNV) is maintained in a natural transmission cycle between mosquito vectors and bird hosts. However, mosquitoes can also transmit WNV to mammals, such as humans and horses, which may result in disease. In Europe, such cases of WNV disease are yearly recurring in southern and central Europe, but have not been detected in northern Europe. The absence of WNV outbreaks in northern Europe may be explained by lowered vector competence of the main vector for WNV: the northern house mosquito, Culex (Cx.) pipiens. The aim of this thesis was, therefore, to investigate the role of Cx. pipiens mosquitoes in transmission of WNV in Europe, in order to understand differences in WNV circulation between northern and southern Europe.

The species Cx. pipiens consists of two biotypes, pipiens and molestus, which can form hybrids. Both biotypes and their hybrids are morphologically identical but differ in their behaviour, which may have consequences for WNV transmission. In this thesis, the Cx. pipiens biotype composition was investigated in The Netherlands, and more broadly at the European scale. These studies revealed that both biotypes and their hybrids are present throughout The Netherlands, and that there is a shift towards relatively more biotype pipiens mosquitoes at northern latitudes in Europe. The next step was to assess vector competence of these northern European biotypes and their hybrids, and to make a direct comparison with vector competence of a southern European population. Both biotypes and their hybrids originating from The Netherlands are competent vectors for WNV. Interestingly, no differences in vector competence were found between a Dutch and Italian biotype pipiens population. However, both studies revealed that low temperatures of 18 °C are an important limiting factor for WNV transmission. A more in-depth study on the effects of WNV on the host-seeking behaviour of biotype pipiens mosquitoes revealed that WNV infection reduces the host-seeking response towards host odour, but that other fitness parameters (e.g. flight activity, blood-feeding, and survival) are not affected. When results from the biotype composition and vector competence studies were included in a newly developed R0 model, it becomes clear that biotype pipiens is the main contributor to WNV transmission.

The results presented in this thesis show that the Cx. pipiens biotypes and their hybrids are present throughout The Netherlands, and that they can transmit WNV under favourable climatic conditions. The absence of WNV outbreaks in northern Europe can most likely be explained by low temperature which has a negative effect on mosquito abundance, vector competence, and the duration of the infectious period. When considering the outcomes of this thesis in the light of climate change, northern European countries such as The Netherlands should be prepared for future WNV transmission.

Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures
Vogels, C.B.F. ; Göertz, G.P. ; Pijlman, G.P. ; Koenraadt, C.J.M. - \ 2017
Medical and Veterinary Entomology 31 (2017)4. - ISSN 0269-283X - p. 358 - 364.
Arbovirus - Culex pipiens complex - Infection - Italy - Northern house mosquito - The Netherlands - Transmission

In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14-day incubation at 18, 23, or 28°C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18°C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.

Modelling West Nile virus transmission risk in Europe : Effect of temperature and mosquito biotypes on the basic reproduction number
Vogels, Chantal B.F. ; Hartemink, Nienke ; Koenraadt, Constantianus J.M. - \ 2017
Scientific Reports 7 (2017)1. - ISSN 2045-2322

West Nile virus (WNV) is a mosquito-borne flavivirus which has caused repeated outbreaks in humans in southern and central Europe, but thus far not in northern Europe. The main mosquito vector for WNV, Culex pipiens, consists of two behaviourally distinct biotypes, pipiens and molestus, which can form hybrids. Differences between biotypes, such as vector competence and host preference, could be important in determining the risk of WNV outbreaks. Risks for WNV establishment can be modelled with basic reproduction number (R 0) models. However, existing R 0 models have not differentiated between biotypes. The aim of this study was, therefore, to explore the role of temperature-dependent and biotype-specific effects on the risk of WNV establishment in Europe. We developed an R 0 model with temperature-dependent and biotype-specific parameters, and calculated R 0 values using the next-generation matrix for several scenarios relevant for Europe. In addition, elasticity analysis was done to investigate the contribution of each biotype to R 0. Global warming and increased mosquito-to-host ratios can possibly result in more intense WNV circulation in birds and spill-over to humans in northern Europe. Different contributions of the Cx. pipiens biotypes to R 0 shows the importance of including biotype-specific parameters in models for reliable WNV risk assessments.

Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti
Göertz, Giel P. ; Vogels, Chantal B.F. ; Geertsema, Corinne ; Koenraadt, Constantianus J.M. ; Pijlman, Gorben P. - \ 2017
PLoS Neglected Tropical Diseases 11 (2017)6. - ISSN 1935-2727 - 22 p.

Background: Zika virus (ZIKV) and chikungunya virus (CHIKV) are highly pathogenic arthropod-borne viruses that are currently a serious health burden in the Americas, and elsewhere in the world. ZIKV and CHIKV co-circulate in the same geographical regions and are mainly transmitted by Aedes aegypti mosquitoes. There is a growing number of case reports of ZIKV and CHIKV co-infections in humans, but it is uncertain whether co-infection occurs via single or multiple mosquito bites. Here we investigate the potential of Ae. aegypti mosquitoes to transmit both ZIKV and CHIKV in one bite, and we assess the consequences of co-infection on vector competence. Methodology/Principal findings: First, growth curves indicated that co-infection with CHIKV negatively affects ZIKV production in mammalian, but not in mosquito cells. Next, Ae. aegypti mosquitoes were infected with ZIKV, CHIKV, or co-infected via an infectious blood meal or intrathoracic injections. Infection and transmission rates, as well as viral titers of positive mosquitoes, were determined at 14 days after blood meal or 7 days after injection. Saliva and bodies of (co-)infected mosquitoes were scored concurrently for the presence of ZIKV and/or CHIKV using a dual-colour immunofluorescence assay. The results show that orally exposed Ae. aegypti mosquitoes are highly competent, with transmission rates of up to 73% for ZIKV, 21% for CHIKV, and 12% of mosquitoes transmitting both viruses in one bite. However, simultaneous oral exposure to both viruses did not change infection and transmission rates compared to exposure to a single virus. Intrathoracic injections indicate that the selected strain of Ae. aegypti has a strong salivary gland barrier for CHIKV, but a less profound barrier for ZIKV. Conclusions/Significance: This study shows that Ae. aegypti can transmit both ZIKV and CHIKV via a single bite. Furthermore, co-infection of ZIKV and CHIKV does not influence the vector competence of Ae. aegypti.

Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes
Göertz, G.P. ; Fros, J.J. ; Miesen, P. ; Vogels, C.B.F. ; Bent, M.L. van der; Geertsema, C. ; Koenraadt, C.J.M. ; Rij, R.P. van; Oers, M.M. van; Pijlman, G.P. - \ 2016
Journal of Virology 90 (2016)22. - ISSN 0022-538X - p. 10145 - 10159.

Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5=-3= exoribonuclease XRN1/Pacman on conserved RNA structures in the 3= untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1- deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo. Two reproducible small-RNA hot spots within the 3= UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3= SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production.

Latitudinal diversity of culex pipiens biotypes and hybrids in farm, peri-Urban, and wetland habitats in Europe
Vogels, Chantal B.F. ; Mohlmann, Tim ; Melsen, Diede ; Favia, Guido ; Wennergren, Uno ; Koenraadt, Sander - \ 2016
PLoS ONE 11 (2016)11. - ISSN 1932-6203 - 10 p.

Despite the presence of Culex (Cx.) pipiens mosquitoes and circulation of West Nile virus (WNV), WNV outbreaks have so far not occurred in northern Europe. The species Cx. pipiens consists of two morphologically identical biotypes, pipiens and molestus, which can form hybrids. Until now, population dynamic studies of Cx. pipiens have not differentiated between biotypes and hybrids at the European scale, nor have they used comparative surveillance approaches. We therefore aimed to elucidate the relative abundance of Cx. pipiens biotypes and hybrids in three habitat types at different latitudes across Europe, using two different surveillance traps. BG-Sentinel and Mosquito-Magnet Liberty Plus traps were placed in three habitat types (farms, peri-urban, wetlands), in three European countries (Sweden, The Netherlands, Italy). Collected Cx. pipiens mosquitoes were identified to biotype with real-time PCR. Both trap types collected equal ratios of the biotypes and their hybrids. From northern to southern latitudes there was a significant decrease of pipiens and an increase of molestus. Habitat types influenced the relative ratios of biotypes and hybrids, but results were not consistent across latitudes. Our results emphasize the need to differentiate Cx. pipiens to the biotype level, especially for proper future WNV risk assessments for Europe.

Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature
Vogels, Chantal B.F. ; Fros, Jelke J. ; Goertz, Giel ; Pijlman, Gorben P. ; Koenraadt, Sander - \ 2016
Parasites & Vectors 9 (2016)1. - ISSN 1756-3305
Arbovirus - Culex - Infection - Temperature - Vector competence - West Nile virus

Background: Outbreaks of West Nile virus (WNV) have not occurred in northern Europe despite nearby circulation of WNV in the southern part of the continent. The main vector for WNV, the mosquito Culex (Cx.) pipiens, consists of two behaviorally distinct biotypes, pipiens and molestus, which can form hybrids. Although temperature has been shown to influence vector competence of Cx. pipiens for WNV and biotypes are differentially susceptible towards infection, the interaction between the two has not been elucidated. Methods: We determined vector competence of the Cx. pipiens biotypes and hybrids, after 14 days of incubation at 18, 23 and 28 °C. Mosquitoes were orally infected by providing an infectious blood meal or by injecting WNV directly in the thorax. Infection and transmission rates were determined by testing the bodies and saliva for WNV presence. In addition, titers of mosquitoes with WNV-positive bodies and saliva samples were determined. Results: Orally infected biotype pipiens and hybrids showed significantly increased transmission rates with higher temperatures, up to 32 and 14 %, respectively. In contrast, the molestus biotype had an overall transmission rate of 10 %, which did not increase with temperature. All mosquitoes that were infected via WNV injections had (close to) 100 % infection and transmission rates, suggesting an important role of the mosquito midgut barrier. We found no effect of increasing temperature on viral titers. Conclusions: Temperature differentially affected vector competence of the Cx. pipiens biotypes. This shows the importance of accounting for biotype-by-temperature interactions, which influence the outcomes of vector competence studies. Vector competence studies with Cx. pipiens mosquitoes differentiated to the biotype level are essential for proper WNV risk assessments.

Crowdfunding site Muggenradar App
Koenraadt, C.J.M. ; Vliet, A.J.H. van; Vogels, C.B.F. - \ 2016
Wageningen University
flora - fauna - birds - lepidoptera - ecology - population dynamics
Mug molesteert ook in de winter
Vliet, Arnold van; Koenraadt, Sander ; Vogels, Chantal - \ 2015
Nieuwe vraag naar muggen
Vliet, Arnold van; Koenraadt, Sander ; Vogels, Chantal - \ 2015
Weer onderzoek naar steekmuggen
Vliet, Arnold van; Koenraadt, Sander ; Vogels, Chantal - \ 2015
Weer onderzoek naar steekmuggen
Vliet, Arnold van; Koenraadt, Sander ; Vogels, Chantal - \ 2015
Mug steekt ook buiten seizoen
Vliet, Arnold van; Koenraadt, Sander ; Vogels, Chantal - \ 2015
Wageningen University wil weer dode steekmuggen
Koenraadt, C.J.M. ; Vogels, C.B.F. ; Vliet, A.J.H. van - \ 2015
Nature Today (2015).
Check title to add to marked list
<< previous | next >>

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.