Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Daqu
Check title to add to marked list
1H NMR-based metabolomics approach for understanding the fermentation behaviour of Bacillus licheniformis
Yan, Zheng ; Zheng, Xiaowei ; Han, Bei Zhong ; Yan, Yin Zhuo ; Zhang, Xin ; Chen, Jing Yu - \ 2015
Journal of the Institute of Brewing 121 (2015)3. - ISSN 0046-9750 - p. 425 - 431.
<sup>1</sup>H NMR - Bacillus licheniformis - Daqu - Fermentation - Metabolic profile

Bacillus licheniformis has been found to be one of the persistent dominant microorganisms in Daqu, which is a traditional fermentation starter, and it has been used to intensify certain strains. To understand the impact of B. licheniformis on Daqu, the fermentation behaviour of B. licheniformis was studied using 1H NMR-based non-targeted analysis and principal component analysis. During the fermentation, 53 compounds were identified. Among them, seven compounds were largely consumed and 17 metabolites were largely accumulated. The macromolecular starch and cellulose were degraded by B. licheniformis, and then utilized to produce acetic acid, lactic acid, propionic acid, succinate acid, etc. Principal component analysis was carried out to study the variations of analytes during the fermentation. Samples collected at each time point could be clearly discriminated and the biomarkers of each time point were defined. A variety of biochemical compounds (such as acetate, ethanol, lactate, pyruvate, malate, maltose and sucrose) were changed during the fermentation of B. licheniformis. The results are useful to reveal how and why B. licheniformis becomes dominant in Daqu, and to reveal its impact on the aroma formation of Daqu and its derived products.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.